A011765 Period 4: repeat [0, 0, 0, 1].
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1
Links
Crossrefs
A121262 is another version.
Programs
-
Magma
&cat [[0, 0, 0, 1]^^30]; // Wesley Ivan Hurt, Jul 10 2016
-
Maple
seq(op([0, 0, 0, 1]), n=1..50); # Wesley Ivan Hurt, Jul 10 2016
-
Mathematica
PadRight[{}, 120, {0,0,0,1}] (* or *) LinearRecurrence[{0,0,0,1}, {0,0,0,1}, 120] (* Harvey P. Dale, Aug 20 2012 *)
-
PARI
a(n)=n%4==0 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: x^4/(1-x^4). - Mohammad K. Azarian, Dec 23 2008
a(n) = (1+(-1)^n)*(1+i^n)/4 with i=sqrt(-1). - Bruno Berselli, Mar 14 2011
a(n) = 1/4 - sin(Pi*(n-1)/2)/2 + (-1)^n/4. - R. J. Mathar, Oct 08 2011
The characteristic function of numbers that are multiples of 4. For the general case: the characteristic function of numbers that are multiples of m is a(n) = floor(n/m) - floor((n-1)/m), m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = a(n-4) for n>4. - Wesley Ivan Hurt, Jul 10 2016
Comments