cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011773 Variant of Carmichael's lambda function: a(p1^e1*...*pN^eN) = lcm((p1-1)*p1^(e1-1), ..., (pN-1)*pN^(eN-1)).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 2, 12, 6, 4, 8, 16, 6, 18, 4, 6, 10, 22, 4, 20, 12, 18, 6, 28, 4, 30, 16, 10, 16, 12, 6, 36, 18, 12, 4, 40, 6, 42, 10, 12, 22, 46, 8, 42, 20, 16, 12, 52, 18, 20, 12, 18, 28, 58, 4, 60, 30, 6, 32, 12, 10, 66, 16, 22, 12
Offset: 1

Views

Author

Thierry Moreau (Thierry.Moreau(AT)connotech.com), Simon Plouffe

Keywords

Crossrefs

Cf. A002322.

Programs

  • Haskell
    a011773 n = foldl lcm 1 $ map (a085730 . a095874) $
                              zipWith (^) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Feb 16 2012
  • Mathematica
    Table[ If[ n==1, 1, LCM@@Map[ (#1[ [ 1 ] ]-1)*#1[ [ 1 ] ]^(#1[ [ 2 ] ]-1)&, FactorInteger[ n ] ] ], {n, 1, 70} ] (* Olivier Gérard, Aug 1997 *)
    a[2] = 1;
    a[n_] := CarmichaelLambda[2n];
    Array[a, 1000] (* Jean-François Alcover, Sep 19 2020 *)
  • PARI
    a(n)=lcm( apply( f -> (f[1]-1)*f[1]^(f[2]-1), Vec(factor(n)~)))  \\ M. F. Hasler, Oct 23 2011
    

Formula

a(n) = A002322(2*n), for n != 2. - Vladeta Jovovic, Feb 28 2004
a(n) = lcm_{k=1..A001221(n)} A085730(A095874(A027748(n,k)^A124010(n,k))). - Reinhard Zumkeller, Feb 16 2012

Extensions

Description corrected by Antti Karttunen, Jan 09 2000
Definition made more explicit by M. F. Hasler, Oct 23 2011