A011773 Variant of Carmichael's lambda function: a(p1^e1*...*pN^eN) = lcm((p1-1)*p1^(e1-1), ..., (pN-1)*pN^(eN-1)).
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 2, 12, 6, 4, 8, 16, 6, 18, 4, 6, 10, 22, 4, 20, 12, 18, 6, 28, 4, 30, 16, 10, 16, 12, 6, 36, 18, 12, 4, 40, 6, 42, 10, 12, 22, 46, 8, 42, 20, 16, 12, 52, 18, 20, 12, 18, 28, 58, 4, 60, 30, 6, 32, 12, 10, 66, 16, 22, 12
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- L. Blum; M. Blum; M. Shub, A simple unpredictable pseudorandom number generator, SIAM J. Comput. 15 (1986), no. 2, 364-383. see p. 377.
- J.-H. Evertse and E. van Heyst, Which new RSA signatures can be computed from some given RSA signatures?, Proceedings of Eurocrypt'90, Lect. Notes Comput. Sci., 473, Springer-Verlag, pp. 84-97, see page 86.
- Eric Weisstein's World of Mathematics, Carmichael Function.
- Eric Weisstein's World of Mathematics, Modulo Multiplication Group.
Crossrefs
Cf. A002322.
Programs
-
Haskell
a011773 n = foldl lcm 1 $ map (a085730 . a095874) $ zipWith (^) (a027748_row n) (a124010_row n) -- Reinhard Zumkeller, Feb 16 2012
-
Mathematica
Table[ If[ n==1, 1, LCM@@Map[ (#1[ [ 1 ] ]-1)*#1[ [ 1 ] ]^(#1[ [ 2 ] ]-1)&, FactorInteger[ n ] ] ], {n, 1, 70} ] (* Olivier Gérard, Aug 1997 *) a[2] = 1; a[n_] := CarmichaelLambda[2n]; Array[a, 1000] (* Jean-François Alcover, Sep 19 2020 *)
-
PARI
a(n)=lcm( apply( f -> (f[1]-1)*f[1]^(f[2]-1), Vec(factor(n)~))) \\ M. F. Hasler, Oct 23 2011
Formula
a(n) = A002322(2*n), for n != 2. - Vladeta Jovovic, Feb 28 2004
Extensions
Description corrected by Antti Karttunen, Jan 09 2000
Definition made more explicit by M. F. Hasler, Oct 23 2011