cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011800 Number of labeled forests of n nodes each component of which is a path.

Original entry on oeis.org

1, 1, 2, 7, 34, 206, 1486, 12412, 117692, 1248004, 14625856, 187638716, 2614602112, 39310384192, 634148436104, 10923398137576, 200069534481616, 3882002527006352, 79535575126745632, 1715658099715217584
Offset: 0

Views

Author

Herbert S. Wilf

Keywords

Comments

Denote the bivariate exponential g.f. by g(x,y)=exp(y*f(x)) where f(x)=(2x-x^2)/(2-2x). Then this sequence is the row sums of the array defined by the g.f. The differential dg/dy = f(x)*exp(y*f(x)) is the exponential generating function for an array with row sums in A201720. - R. J. Mathar, Jun 27 2022

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (3.3.6).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(d).

Programs

  • Mathematica
    Function[ esl, esl*Array[ Factorial, Length[ esl ], 0 ] ][ CoefficientList[ Series[ Exp[ x+x^2/(2-2x) ], {x, 0, 20} ], x ] ] (* Olivier Gérard *)
    With[{nn=20},CoefficientList[Series[Exp[x+x^2/(2*(1-x))],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 13 2019 *)
  • Maxima
    a(n):=n!*sum(sum(binomial(k,n-k-i)*binomial(k+i-1,k-1)*2^(-n+k+i)*(-1)^(n-k-i),i,0,n-k)/(k!),k,1,n); /* Vladimir Kruchinin, Nov 25 2012 */

Formula

E.g.f.: exp[ x + x^2/(2*(1 - x)) ].
a(n) = Sum_{k=0..n} |Stirling1(n, k)|*A003724(k). - Vladeta Jovovic, Oct 19 2003
Recurrence: 2*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-1)^2*a(n-2) + (n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ 2^(-3/4)*exp(sqrt(2*n)-n+1/4)*n^(n-1/4). - Vaclav Kotesovec, Oct 07 2012
a(n) = n!*Sum_{k=1..n} (Sum_{i=0..n-k} binomial(k,n-k-i)*binomial(k+i-1,k-1)*2^(-n+k+i)*(-1)^(n-k-i))/k!, n > 0, a(0) = 1. - Vladimir Kruchinin, Nov 25 2012