cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011912 a(n) = floor(n*(n-1)*(n-2)/30).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 4, 7, 11, 16, 24, 33, 44, 57, 72, 91, 112, 136, 163, 193, 228, 266, 308, 354, 404, 460, 520, 585, 655, 730, 812, 899, 992, 1091, 1196, 1309, 1428, 1554, 1687, 1827, 1976, 2132, 2296, 2468, 2648, 2838, 3036, 3243, 3459, 3684, 3920, 4165, 4420, 4685, 4960, 5247, 5544, 5852, 6171, 6501, 6844, 7198, 7564, 7942, 8332, 8736, 9152, 9581, 10023, 10478, 10948
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011886.

Programs

  • Magma
    [Floor(n*(n-1)*(n-2)/30): n in [0..80]]; // Vincenzo Librandi, Jul 07 2012
    
  • Maple
    seq(floor(binomial(n,3)/5), n=0..80); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Table[Floor[(n(n-1)(n-2))/30],{n,0,80}] (* or *) LinearRecurrence[{3,-3,1,0, 1,-3,3,-1},{0,0,0,0,0,2,4,7},81] (* Harvey P. Dale, Jun 20 2011 *)
    CoefficientList[Series[x^5*(x^2-2*x+2)/((-1+x)^4*(x^4+x^3+x^2+x+1)),{x,0,80}],x] (* Vincenzo Librandi, Jul 07 2012 *)
  • SageMath
    [binomial(n,3)//5 for n in range(81)] # G. C. Greubel, Oct 19 2024

Formula

From R. J. Mathar, Apr 15 2010: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8).
G.f.: x^5*(2-2*x+x^2) / ( (1-x)^4*(1+x+x^2+x^3+x^4) ). (End)