A011944 a(n) = 14*a(n-1) - a(n-2) with a(0) = 0, a(1) = 2.
0, 2, 28, 390, 5432, 75658, 1053780, 14677262, 204427888, 2847313170, 39657956492, 552364077718, 7693439131560, 107155783764122, 1492487533566148, 20787669686161950, 289534888072701152
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences
- E. Keith Lloyd, The Standard Deviation of 1, 2,..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243.
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
Programs
-
Mathematica
LinearRecurrence[{14,-1},{0,2},20] (* Harvey P. Dale, Oct 17 2019 *) Table[2 ChebyshevU[-1 + n, 7], {n, 0, 18}] (* Herbert Kociemba, Jun 05 2022 *)
Formula
For all members x of the sequence, 12*x^2 +1 is a square. Lim_{n->infinity} a(n)/a(n-1) = 7 + sqrt(12). - Gregory V. Richardson, Oct 13 2002
a(n) = ((7+2*sqrt(12))^(n-1) - (7-2*sqrt(12))^(n-1)) / (2*sqrt(12)). - Gregory V. Richardson, Oct 13 2002
a(n) = 13*(a(n-1) + a(n-2)) - a(n-3). a(n) = 15*(a(n-1) - a(n-2)) + a(n-3). - Mohamed Bouhamida, Sep 20 2006
a(n) = sinh(2n*arcsinh(sqrt(3)))/sqrt(12). - Herbert Kociemba, Apr 24 2008
G.f.: 2x/(1-14*x+x^2). - Philippe Deléham, Nov 17 2008
Comments