cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011969 Apply (1+Shift)^2 to Bell numbers.

Original entry on oeis.org

1, 3, 5, 10, 27, 87, 322, 1335, 6097, 30304, 162409, 931667, 5686712, 36750201, 250401793, 1792401626, 13436958559, 105208112643, 858286687914, 7279760687179, 64071719451645, 584150874832552, 5508179528996197
Offset: 0

Views

Author

Keywords

Comments

Starting with n=2 (a(2)=5), number of set partitions of n+2 with at least one singleton and the smallest element in any singleton is exactly n-1. The maximum number of singletons is therefore 4. Alternatively, starting with n=2, number of set partitions of n+2 with at least one singleton and the largest element in any singleton is exactly 4. E.g. a(3)=10 counts the following set partitions of [5]: {1345, 2}, {13, 2, 45}, {145, 2, 3}, {134, 2, 5}, {15, 2, 34}, {135, 2, 4}, {14, 2, 35}, {13, 2, 4, 5}, {14, 2, 3, 5}, {15, 2, 3, 4}. - Olivier Gérard, Oct 29 2007
Let V(N)={v(1),v(2),...,v(N)} denote an ordered set of increasing positive integers containing 2 pairs of adjacent elements that differ by at least 2, that is, v(i),v(i+1) with v(i+1)-v(i)>1. Then for n>1, a(n) is the number of partitions of V(n+1) into blocks of nonconsecutive integers. - Augustine O. Munagi, Jul 17 2008

Examples

			a(3)=10 because the set {1,3,5,6} has 10 different partitions into blocks of nonconsecutive integers: 15/36, 16/35, 135/6, 136/5, 1/35/6, 1/36/5, 13/5/6, 15/3/6, 16/3/5, 1/3/5/6.
		

References

  • Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011

Crossrefs

A diagonal of A011971 and A106436. - N. J. A. Sloane, Jul 31 2012

Programs

  • Maple
    with(combinat): 1,3,seq(`if`(n>1,bell(n)+2*bell(n-1)+bell(n-2),NULL),n=2..22); # Augustine O. Munagi, Jul 17 2008
  • Mathematica
    Join[{1,3},#[[1]]+2#[[2]]+#[[3]]&/@Partition[BellB[Range[0,30]],3,1]] (* Harvey P. Dale, May 05 2023 *)
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011969_list, blist, b, b2 = [1,3], [1], 1, 1
    for _ in range(10**2):
        blist = list(accumulate([b]+blist))
        A011969_list.append(2*b+b2+blist[-1])
        b2, b = b, blist[-1]
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

For n >= 1, a(n+2) = exp(-1)*Sum_{k>=0} (k+1)^2/k!*k^n. - Benoit Cloitre, Mar 09 2008
If n>1, then a(n) = Bell(n) + 2*Bell(n-1) + Bell(n-2). - Augustine O. Munagi, Jul 17 2008
G.f.: -(1+2*x)*(1+x)^2*Sum_{k>=0} x^(2*k)*(4*x*k^2-2*k-2*x-1)/((2*k+1)*(2*x*k-1))*A(k)/B(k) where A(k) = Product_{p=0..k} (2*p+1), B(k) = Product_{p=0..k} (2*p-1)*(2*x*p-x-1)*(2*x*p-2*x-1). - Sergei N. Gladkovskii, Jan 03 2013 [corrected by Jason Yuen, Apr 03 2025]
G.f.: G(0)*(1+x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 03 2013
a(n) ~ Bell(n) * (1 + 2*LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021