cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012261 Expansion of e.g.f. exp(arctanh(sinh(x))).

Original entry on oeis.org

1, 1, 1, 4, 13, 76, 421, 3424, 26713, 277456, 2794441, 35345344, 436186213, 6504742336, 95033434861, 1632531979264, 27555582190513, 535821754153216, 10260037095841681, 222769351470429184, 4771143086720391613
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Examples

			G.f. = 1 + x + x^2 + 4*x^3 + 13*x^4 + 76*x^5 + 421*x^6 + 3424*x^7 + ...
E.g.f. = 1 + 1*x1/1! + 1*x^2/2! + 4*x^3/3! + 13*x^4/4! + 76*x^5/5! + ...
		

Crossrefs

Cf. A012109.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Argtanh(Sinh(x))) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 28 2018
  • Maple
    seq(coeff(series(factorial(n)*exp(arctanh(sinh(x))),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 29 2018
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[ArcTanh[Sinh[x]]],{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Jul 24 2012 *)
    a[ n_] := If[n < 0, 0, n! SeriesCoefficient[ Sqrt[-1 + 2/(1 - Sinh[x])], {x, 0, n}]]; (* Michael Somos, May 05 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( sqrt(-1 + 2 / (1 - sinh(x + x * O(x^n)))), n))}; /* Michael Somos, May 05 2017 */
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(atanh(sinh(x))))) \\ G. C. Greubel, Oct 28 2018
    

Formula

E.g.f.: sqrt( (1 + sinh(x)) / (1 - sinh(x)) ).
a(n) ~ 2^(3/4) * n^n / (exp(n) * arcsinh(1)^(n+1/2)). - Vaclav Kotesovec, Oct 25 2013
From Michael Somos, May 05 2017: (Start)
E.g.f y(x) satisfies 0 = (1 + y^2) * (3 + y^2) + 4*y*y''*(1 + 2*y^2) + 4*y'*y'*(1 - 6*y^2).
a(2*n) = A012109(n).
E.g.f. y(x) satisfies y(-x) = 1/y(x).
(End)

Extensions

Definition clarified by Harvey P. Dale, Jul 24 2012