A012781 Take every 5th term of Padovan sequence A000931, beginning with the second term.
0, 1, 4, 16, 65, 265, 1081, 4410, 17991, 73396, 299426, 1221537, 4983377, 20330163, 82938844, 338356945, 1380359512, 5631308624, 22973462017, 93722435101, 382349636061, 1559831901918, 6363483400447, 25960439030624
Offset: 0
References
- R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Index entries for linear recurrences with constant coefficients, signature (5,-4,1).
Programs
-
Magma
I:=[0, 1, 4 ]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 03 2012
-
Mathematica
LinearRecurrence[{5, -4, 1}, {0, 1, 4}, 25] (* Harvey P. Dale, Jan 10 2012 *)
-
Python
def a(n, adict={0:0, 1:1, 2:4}): if n in adict: return adict[n] adict[n]=5*a(n-1) - 4*a(n-2) + a(n-3) return adict[n] # David Nacin, Feb 27 2012
Formula
a(n+3) = 5*a(n+2) - 4*a(n+1) + a(n).
G.f.: x*(1-x)/(1-5*x+4*x^2-x^3). - Colin Barker, Feb 03 2012
Extensions
Initial term 0 added by Colin Barker, Feb 03 2012
Comments