A013580 Triangle formed in same way as Pascal's triangle (A007318) except 1 is added to central element in even-numbered rows.
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 9, 5, 1, 1, 6, 14, 14, 6, 1, 1, 7, 20, 29, 20, 7, 1, 1, 8, 27, 49, 49, 27, 8, 1, 1, 9, 35, 76, 99, 76, 35, 9, 1, 1, 10, 44, 111, 175, 175, 111, 44, 10, 1, 1, 11, 54, 155, 286, 351, 286, 155, 54, 11, 1, 1, 12, 65, 209, 441, 637, 637, 441, 209, 65
Offset: 0
Examples
Triangle begins: 1 1 1 1 3 1 1 4 4 1 1 5 9 5 1 1 6 14 14 6 1 1 7 20 29 20 7 1 1 8 27 49 49 27 8 1 1 9 35 76 99 76 35 9 1 1 10 44 111 175 175 111 44 10 1 1 11 54 155 286 351 286 155 54 11 1 1 12 65 209 441 637 637 441 209 65 12 1
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
CoefficientList[CoefficientList[Series[1/(1 - (1 + y)*x)/(1 - y*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 10 2017 *)
Formula
G.f.: 1/(1-(1+y)*x)/(1-y*x^2). - Vladeta Jovovic, Oct 12 2003
Extensions
More terms from James Sellers
Comments