cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013611 Triangle of coefficients in expansion of (1+4x)^n.

Original entry on oeis.org

1, 1, 4, 1, 8, 16, 1, 12, 48, 64, 1, 16, 96, 256, 256, 1, 20, 160, 640, 1280, 1024, 1, 24, 240, 1280, 3840, 6144, 4096, 1, 28, 336, 2240, 8960, 21504, 28672, 16384, 1, 32, 448, 3584, 17920, 57344, 114688, 131072, 65536, 1, 36, 576, 5376, 32256, 129024, 344064, 589824, 589824, 262144
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,2,3,4} having n-k zeros. - Milan Janjic, Jul 24 2015

Examples

			Triangle begins
  1;
  1,    4;
  1,    8,   16;
  1,   12,   48,   64;
  1,   16,   96,  256,  256;
  1,   20,  160,  640, 1280, 1024;
  1,   24,  240, 1280, 3840, 6144, 4096;
		

Crossrefs

Cf. A000351 (5^n).

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+4*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 24 2015
  • Mathematica
    Flatten[Table[CoefficientList[Series[(1+4x)^n,{x,0,10}],x],{n,0,15}]] (* Harvey P. Dale, Oct 10 2011 *)

Formula

G.f.: 1 / (1 - x(1+4y)).
T(n,k) = 4^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*3^(n-i). Row sums are 5^n = A000351. - Mircea Merca, Apr 28 2012