A038231
Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j).
Original entry on oeis.org
1, 4, 1, 16, 8, 1, 64, 48, 12, 1, 256, 256, 96, 16, 1, 1024, 1280, 640, 160, 20, 1, 4096, 6144, 3840, 1280, 240, 24, 1, 16384, 28672, 21504, 8960, 2240, 336, 28, 1, 65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1, 262144, 589824, 589824, 344064, 129024, 32256, 5376, 576, 36, 1
Offset: 0
Triangle begins:
1;
4, 1;
16, 8, 1;
64, 48, 12, 1;
256, 256, 96, 16, 1;
1024, 1280, 640, 160, 20, 1;
4096, 6144, 3840, 1280, 240, 24, 1;
16384, 28672, 21504, 8960, 2240, 336, 28, 1;
65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1;
- Indranil Ghosh, Rows 0..125 of triangle, flattened
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
-
Flat(List([0..10], n-> List([0..n], k-> 4^(n-k)*Binomial(n, k) ))); # G. C. Greubel, Jul 20 2019
-
[4^(n-k)*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 20 2019
-
for i from 0 to 10 do seq(binomial(i, j)*4^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 4^(n-1)); # Peter Luschny, Oct 09 2022
-
Table[4^(n-k)*Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 20 2019 *)
-
T(n,k) = 4^(n-k)*binomial(n, k); \\ G. C. Greubel, Jul 20 2019
-
[[4^(n-k)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
A081578
Pascal-(1,3,1) array.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 33, 13, 1, 1, 17, 73, 73, 17, 1, 1, 21, 129, 245, 129, 21, 1, 1, 25, 201, 593, 593, 201, 25, 1, 1, 29, 289, 1181, 1921, 1181, 289, 29, 1, 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1, 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 5, 9, 13, 17, ... A016813;
1, 9, 33, 73, 129, ... A081585;
1, 13, 73, 245, 593, ... A081586;
1, 17, 129, 593, 1921, ...
As a triangle this begins:
1;
1, 1;
1, 5, 1;
1, 9, 9, 1;
1, 13, 33, 13, 1;
1, 17, 73, 73, 17, 1;
1, 21, 129, 245, 129, 21, 1;
1, 25, 201, 593, 593, 201, 25, 1;
1, 29, 289, 1181, 1921, 1181, 289, 29, 1;
1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1;
1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1; - _Philippe Deléham_, Mar 15 2014
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8).
-
a081578 n k = a081578_tabl !! n !! k
a081578_row n = a081578_tabl !! n
a081578_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) (map (* 3) ([0] ++ us ++ [0])) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
-- Reinhard Zumkeller, Mar 16 2014
-
A081578:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081578(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 4], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 4).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A123187
Triangle of coefficients in expansion of (1+13x)^n.
Original entry on oeis.org
1, 1, 13, 1, 26, 169, 1, 39, 507, 2197, 1, 52, 1014, 8788, 28561, 1, 65, 1690, 21970, 142805, 371293, 1, 78, 2535, 43940, 428415, 2227758, 4826809, 1, 91, 3549, 76895, 999635, 7797153, 33787663, 62748517, 1, 104, 4732, 123032, 1999270, 20792408
Offset: 1
1
1, 13
1, 26, 169
1, 39, 507, 2197
1, 52, 1014, 8788, 28561
1, 65, 1690, 21970, 142805, 371293
-
T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+13*x)^n):
seq(T(n), n=0..10); # Alois P. Heinz, Jul 24 2015
-
p[0, x] = 1; p[1, x] = 13*x + 1; p[k_, x_] := p[k, x] = (13*x + 1)*p[k - 1, x]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]
A305833
Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 4, 16, 1, 64, 8, 256, 48, 1, 1024, 256, 12, 4096, 1280, 96, 1, 16384, 6144, 640, 16, 65536, 28672, 3840, 160, 1, 262144, 131072, 21504, 1280, 20, 1048576, 589824, 114688, 8960, 240, 1, 4194304, 2621440, 589824, 57344, 2240, 24, 16777216, 11534336, 2949120, 344064, 17920, 336, 1
Offset: 0
Triangle begins:
1;
4;
16, 1;
64, 8;
256, 48, 1;
1024, 256, 12;
4096, 1280, 96, 1;
16384, 6144, 640, 16;
65536, 28672, 3840, 160, 1;
262144, 131072, 21504, 1280, 20;
1048576, 589824, 114688, 8960, 240, 1;
4194304, 2621440, 589824, 57344, 2240, 24;
16777216, 11534336, 2949120, 344064, 17920, 336, 1;
67108864, 50331648, 14417920, 1966080, 129024, 3584, 28;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
A305834
Triangle read by rows: T(0,0)= 1; T(n,k)= T(n-1,k) + 4*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 1, 1, 4, 1, 8, 1, 12, 16, 1, 16, 48, 1, 20, 96, 64, 1, 24, 160, 256, 1, 28, 240, 640, 256, 1, 32, 336, 1280, 1280, 1, 36, 448, 2240, 3840, 1024, 1, 40, 576, 3584, 8960, 6144, 1, 44, 720, 5376, 17920, 21504, 4096
Offset: 0
Triangle begins:
1;
1;
1, 4;
1, 8;
1, 12, 16;
1, 16, 48;
1, 20, 96, 64;
1, 24, 160, 256;
1, 28, 240, 640, 256;
1, 32, 336, 1280, 1280;
1, 36, 448, 2240, 3840, 1024;
1, 40, 576, 3584, 8960, 6144;
1, 44, 720, 5376, 17920, 21504, 4096;
1, 48, 880, 7680, 32256, 57344, 28672;
1, 52, 1056, 10560, 53760, 129024, 114688, 16384;
1, 56, 1248, 14080, 84480, 258048, 344064, 131072;
1, 60, 1456, 18304, 126720, 473088, 860160, 589824, 65536;
1, 64, 1680, 23296, 183040, 811008, 1892352, 1966080, 589824;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 371, 372.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 4 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
A267849
Triangular array: T(n,k) is the 2-row creation rook number to place k rooks on a 3 x n board.
Original entry on oeis.org
1, 1, 3, 1, 6, 12, 1, 9, 36, 60, 1, 12, 72, 240, 360, 1, 15, 120, 600, 1800, 2520, 1, 18, 180, 1200, 5400, 15120, 20160, 1, 21, 252, 2100, 12600, 52920, 141120, 181440, 1, 24, 336, 3360, 25200, 141120, 564480, 1451520, 1814400, 1, 27, 432, 5040, 45360, 317520, 1693440, 6531840, 16329600, 19958400
Offset: 0
The triangle T(n,k) begins in row n=0 with columns 0<=k<=n:
1
1 3
1 6 12
1 9 36 60
1 12 72 240 360
1 15 120 600 1800 2520
1 18 180 1200 5400 15120 20160
1 21 252 2100 12600 52920 141120 181440
1 24 336 3360 25200 141120 564480 1451520 1814400
1 27 432 5040 45360 317520 1693440 6531840 16329600 19958400
Cf.
A013610 (1-rook coefficients on the 3xn board),
A121757 (2-rook coeffs. on the 2xn board),
A013609 (1-rook coeffs. on the 2xn board),
A013611 (1-rook coeffs. on the 4xn board),
A008279 (2-rook coeffs. on the 1xn board),
A082030 (row sums?),
A049598 (column k=2),
A007531 (column k=3 w/o factor 10),
A001710 (diagonal?).
Showing 1-6 of 6 results.
Comments