cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A038231 Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j).

Original entry on oeis.org

1, 4, 1, 16, 8, 1, 64, 48, 12, 1, 256, 256, 96, 16, 1, 1024, 1280, 640, 160, 20, 1, 4096, 6144, 3840, 1280, 240, 24, 1, 16384, 28672, 21504, 8960, 2240, 336, 28, 1, 65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1, 262144, 589824, 589824, 344064, 129024, 32256, 5376, 576, 36, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle of coefficients in expansion of (4+x)^n. - N-E. Fahssi, Apr 13 2008

Examples

			Triangle begins:
      1;
      4,      1;
     16,      8,      1;
     64,     48,     12,     1;
    256,    256,     96,    16,     1;
   1024,   1280,    640,   160,    20,    1;
   4096,   6144,   3840,  1280,   240,   24,   1;
  16384,  28672,  21504,  8960,  2240,  336,  28,  1;
  65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1;
		

Crossrefs

Cf. A000302, A013611 (row-reversed), A000351 (row sums).

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 4^(n-k)*Binomial(n, k) ))); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^(n-k)*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    for i from 0 to 10 do seq(binomial(i, j)*4^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 4^(n-1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[4^(n-k)*Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 20 2019 *)
  • PARI
    T(n,k) = 4^(n-k)*binomial(n, k); \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [[4^(n-k)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
    

Formula

G.f. for j-th column is (x^j)/(1-4*x)^(j+1).
Convolution triangle of A000302 (powers of 4).
Sum_{k=0..n} T(n,k)*(-1)^k*A000108(k) = A001700(n). - Philippe Deléham, Nov 27 2009
See A038207 and A027465 and replace 2 and 3 in analogous formulas with 4. - Tom Copeland, Oct 26 2012

A081578 Pascal-(1,3,1) array.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 33, 13, 1, 1, 17, 73, 73, 17, 1, 1, 21, 129, 245, 129, 21, 1, 1, 25, 201, 593, 593, 201, 25, 1, 1, 29, 289, 1181, 1921, 1181, 289, 29, 1, 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1, 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016813, A081585, A081586. Coefficients of the row polynomials in the Newton basis are given by A013611.
As a number triangle, this is the Riordan array (1/(1-x), x*(1+3*x)/(1-x)). It has row sums A015518(n+1) and diagonal sums A103143. - Paul Barry, Jan 24 2005

Examples

			Square array begins as:
  1,  1,   1,   1,    1, ... A000012;
  1,  5,   9,  13,   17, ... A016813;
  1,  9,  33,  73,  129, ... A081585;
  1, 13,  73, 245,  593, ... A081586;
  1, 17, 129, 593, 1921, ...
As a triangle this begins:
  1;
  1,  1;
  1,  5,   1;
  1,  9,   9,    1;
  1, 13,  33,   13,     1;
  1, 17,  73,   73,    17,     1;
  1, 21, 129,  245,   129,    21,     1;
  1, 25, 201,  593,   593,   201,    25,    1;
  1, 29, 289, 1181,  1921,  1181,   289,   29,   1;
  1, 33, 393, 2073,  4881,  4881,  2073,  393,  33,  1;
  1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1; - _Philippe Deléham_, Mar 15 2014
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Haskell
    a081578 n k = a081578_tabl !! n !! k
    a081578_row n = a081578_tabl !! n
    a081578_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) (map (* 3) ([0] ++ us ++ [0])) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    A081578:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081578(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 4], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 4).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 3*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+3*x)^k/(1-x)^(k+1).
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*3^(j-k). - Paul Barry, Oct 23 2006
E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(4*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 8*x + 16*x^2/2) = 1 + 9*x + 33*x^2/2! + 73*x^3/3! + 129*x^4/4! + 201*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 3.
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 3.
Sum_{k=0..n} T(n, k, 3) = A015518(n+1). (End)

A123187 Triangle of coefficients in expansion of (1+13x)^n.

Original entry on oeis.org

1, 1, 13, 1, 26, 169, 1, 39, 507, 2197, 1, 52, 1014, 8788, 28561, 1, 65, 1690, 21970, 142805, 371293, 1, 78, 2535, 43940, 428415, 2227758, 4826809, 1, 91, 3549, 76895, 999635, 7797153, 33787663, 62748517, 1, 104, 4732, 123032, 1999270, 20792408
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 03 2006

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,13} having n-k zeros. - Milan Janjic, Jul 24 2015

Examples

			1
1, 13
1, 26, 169
1, 39, 507, 2197
1, 52, 1014, 8788, 28561
1, 65, 1690, 21970, 142805, 371293
		

Crossrefs

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+13*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 24 2015
  • Mathematica
    p[0, x] = 1; p[1, x] = 13*x + 1; p[k_, x_] := p[k, x] = (13*x + 1)*p[k - 1, x]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]

Formula

p(k, x) = (13*x + 1)*p(k - 1, x).
T(n,k) = 13^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*12^(n-i). Row sums are 14^n = A001023. G.f.: 1 / [1 - x(1+13y)]. - Mircea Merca, Apr 28 2012

A305833 Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 4, 16, 1, 64, 8, 256, 48, 1, 1024, 256, 12, 4096, 1280, 96, 1, 16384, 6144, 640, 16, 65536, 28672, 3840, 160, 1, 262144, 131072, 21504, 1280, 20, 1048576, 589824, 114688, 8960, 240, 1, 4194304, 2621440, 589824, 57344, 2240, 24, 16777216, 11534336, 2949120, 344064, 17920, 336, 1
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013611 ((1+4*x)^n).
The coefficients in the expansion of 1/(1-4x-x^2) are given by the sequence generated by the row sums.
The row sums are A001076 (Denominators of continued fraction convergent to sqrt(5)).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 4.236067977...; a metallic mean (see A098317), when n approaches infinity.

Examples

			Triangle begins:
         1;
         4;
        16,        1;
        64,        8;
       256,       48,        1;
      1024,      256,       12;
      4096,     1280,       96,       1;
     16384,     6144,      640,      16;
     65536,    28672,     3840,     160,      1;
    262144,   131072,    21504,    1280,     20;
   1048576,   589824,   114688,    8960,    240,    1;
   4194304,  2621440,   589824,   57344,   2240,   24;
  16777216, 11534336,  2949120,  344064,  17920,  336,  1;
  67108864, 50331648, 14417920, 1966080, 129024, 3584, 28;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373.

Crossrefs

Row sums give A001076.
Cf. A000302 (column 0), A002697 (column 1), A038845 (column 2), A038846 (column 3), A040075 (column 4).
Cf. A013611.
Cf. A098317.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1 / (1 - 4*t*x - t^2).

A305834 Triangle read by rows: T(0,0)= 1; T(n,k)= T(n-1,k) + 4*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 4, 1, 8, 1, 12, 16, 1, 16, 48, 1, 20, 96, 64, 1, 24, 160, 256, 1, 28, 240, 640, 256, 1, 32, 336, 1280, 1280, 1, 36, 448, 2240, 3840, 1024, 1, 40, 576, 3584, 8960, 6144, 1, 44, 720, 5376, 17920, 21504, 4096
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013611 ((1+4*x)^n).
The coefficients in the expansion of 1/(1-x-4*x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.5615528128...: A222132 (sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... ))))), when n approaches infinity.

Examples

			Triangle begins:
1;
1;
1,  4;
1,  8;
1, 12,   16;
1, 16,   48;
1, 20,   96,    64;
1, 24,  160,   256;
1, 28,  240,   640,    256;
1, 32,  336,  1280,   1280;
1, 36,  448,  2240,   3840,   1024;
1, 40,  576,  3584,   8960,   6144;
1, 44,  720,  5376,  17920,  21504,    4096;
1, 48,  880,  7680,  32256,  57344,   28672;
1, 52, 1056, 10560,  53760, 129024,  114688,   16384;
1, 56, 1248, 14080,  84480, 258048,  344064,  131072;
1, 60, 1456, 18304, 126720, 473088,  860160,  589824,  65536;
1, 64, 1680, 23296, 183040, 811008, 1892352, 1966080, 589824;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 371, 372.

Crossrefs

Row sums give A006131.
Cf. A000012 (column 0), A008586 (column 1), A035008 (column 2), A141478 (column 3), A120054 (column 4).
Cf. A013611.
Cf. A222132.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 4 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1/(1 - t*x - 4*t^2).
Column k is binomial (n + k - 1, k) * 4^k.

A267849 Triangular array: T(n,k) is the 2-row creation rook number to place k rooks on a 3 x n board.

Original entry on oeis.org

1, 1, 3, 1, 6, 12, 1, 9, 36, 60, 1, 12, 72, 240, 360, 1, 15, 120, 600, 1800, 2520, 1, 18, 180, 1200, 5400, 15120, 20160, 1, 21, 252, 2100, 12600, 52920, 141120, 181440, 1, 24, 336, 3360, 25200, 141120, 564480, 1451520, 1814400, 1, 27, 432, 5040, 45360, 317520, 1693440, 6531840, 16329600, 19958400
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of ways to place k rooks in a 3 x n Ferrers board (or diagram) under the Goldman-Haglund i-row creation rook mode for i=2. All row heights are 3.

Examples

			The triangle T(n,k) begins in row n=0 with columns 0<=k<=n:
     1
     1      3
     1      6     12
     1      9     36     60
     1     12     72    240    360
     1     15    120    600   1800   2520
     1     18    180   1200   5400  15120  20160
     1     21    252   2100  12600  52920 141120 181440
     1     24    336   3360  25200 141120 564480 1451520 1814400
     1     27    432   5040  45360 317520 1693440 6531840 16329600 19958400
		

Crossrefs

Cf. A013610 (1-rook coefficients on the 3xn board), A121757 (2-rook coeffs. on the 2xn board), A013609 (1-rook coeffs. on the 2xn board), A013611 (1-rook coeffs. on the 4xn board), A008279 (2-rook coeffs. on the 1xn board), A082030 (row sums?), A049598 (column k=2), A007531 (column k=3 w/o factor 10), A001710 (diagonal?).

Formula

T(n,k) = T(n-1,k) + (k+2) T(n-1,k-1) subject to T(0,0)=1, T(n,k)=0 for n

Extensions

Triangle simplified (reversing rows, offset 0). - R. J. Mathar, May 03 2017
Showing 1-6 of 6 results.