cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013612 Triangle of coefficients in expansion of (1+5x)^n.

Original entry on oeis.org

1, 1, 5, 1, 10, 25, 1, 15, 75, 125, 1, 20, 150, 500, 625, 1, 25, 250, 1250, 3125, 3125, 1, 30, 375, 2500, 9375, 18750, 15625, 1, 35, 525, 4375, 21875, 65625, 109375, 78125, 1, 40, 700, 7000, 43750, 175000, 437500, 625000, 390625, 1, 45, 900, 10500, 78750, 393750, 1312500, 2812500, 3515625, 1953125
Offset: 0

Views

Author

Keywords

Comments

Mirror image of A038243. - Zerinvary Lajos, Nov 25 2007
T(n,k) equals the number of n-length words on {0,1,...,5} having n-k zeros. - Milan Janjic, Jul 24 2015

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+5*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    row[n_] := CoefficientList[(1 + 5x)^n, x]; Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Feb 13 2016 *)

Formula

G.f.: 1 / [1 - x(1+5y)].
T(n,k) = 5^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k) *C(n,i) *4^(n-i). Row sums are 6^n = A000400(n). - Mircea Merca, Apr 28 2012