cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081579 Pascal-(1,4,1) array.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 16, 46, 16, 1, 1, 21, 106, 106, 21, 1, 1, 26, 191, 396, 191, 26, 1, 1, 31, 301, 1011, 1011, 301, 31, 1, 1, 36, 436, 2076, 3606, 2076, 436, 36, 1, 1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1, 1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016861, A081587, A081588. Coefficients of the row polynomials in the Newton basis are given by A013612.

Examples

			Square array begins as:
  1,  1,   1,    1,    1, ... A000012;
  1,  6,  11,   16,   21, ... A016861;
  1, 11,  46,  106,  191, ... A081587;
  1, 16, 106,  396, 1011, ... A081588;
  1, 21, 191, 1011, 3606, ...
As triangle this begins:
  1;
  1,  1;
  1,  6,   1;
  1, 11,  11,    1;
  1, 16,  46,   16,     1;
  1, 21, 106,  106,    21,     1;
  1, 26, 191,  396,   191,    26,     1;
  1, 31, 301, 1011,  1011,   301,    31,    1;
  1, 36, 436, 2076,  3606,  2076,   436,   36,   1;
  1, 41, 596, 3716,  9726,  9726,  3716,  596,  41,  1;
  1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1; - _Philippe Deléham_, Mar 15 2014
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081579:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081579(n,k,4): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 5], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 5).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 4*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+4*x)^k/(1-x)^(k+1).
From Philippe Deléham, Mar 15 2014: (Start)
Riordan array (1/(1-x), x*(1+4*x)/(1-x)).
Sum_{k=0..n} T(n, k) = A063727(n). (End)
E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(5*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 10*x + 25*x^2/2) = 1 + 11*x + 46*x^2/2! + 106*x^3/3! + 191*x^4/4! + 301*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 4.
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 4. (End)

A038243 Triangle whose (i,j)-th entry is 5^(i-j)*binomial(i,j).

Original entry on oeis.org

1, 5, 1, 25, 10, 1, 125, 75, 15, 1, 625, 500, 150, 20, 1, 3125, 3125, 1250, 250, 25, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 78125, 109375, 65625, 21875, 4375, 525, 35, 1, 390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1, 1953125, 3515625, 2812500, 1312500, 393750, 78750, 10500, 900, 45, 1
Offset: 0

Views

Author

Keywords

Comments

Mirror image of A013612. - Zerinvary Lajos, Nov 25 2007
T(i,j) is the number of i-permutations of 6 objects a,b,c,d,e,f, with repetition allowed, containing j a's. - Zerinvary Lajos, Dec 21 2007
Triangle of coefficients in expansion of (5+x)^n - N-E. Fahssi, Apr 13 2008
Also the convolution triangle of A000351. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins as:
       1;
       5,      1;
      25,     10,      1;
     125,     75,     15,      1;
     625,    500,    150,     20,     1;
    3125,   3125,   1250,    250,    25,    1;
   15625,  18750,   9375,   2500,   375,   30,   1;
   78125, 109375,  65625,  21875,  4375,  525,  35,  1;
  390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1;
		

Crossrefs

Sequences of the form q^(n-k)*binomial(n, k): A007318 (q=1), A038207 (q=2), A027465 (q=3), A038231 (q=4), this sequence (q=5), A038255 (q=6), A027466 (q=7), A038279 (q=8), A038291 (q=9), A038303 (q=10), A038315 (q=11), A038327 (q=12), A133371 (q=13), A147716 (q=14), A027467 (q=15).

Programs

  • Magma
    [5^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 12 2021
    
  • Maple
    for i from 0 to 8 do seq(binomial(i, j)*5^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 5^(n-1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    With[{q=5}, Table[q^(n-k)*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, May 12 2021 *)
  • Sage
    flatten([[5^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 12 2021

Formula

See A038207 and A027465 and replace 2 and 3 in analogous formulas with 5. - Tom Copeland, Oct 26 2012

A305837 Triangle read by rows: T(0,0) = 1; T(n,k) = 5*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 5, 25, 1, 125, 10, 625, 75, 1, 3125, 500, 15, 15625, 3125, 150, 1, 78125, 18750, 1250, 20, 390625, 109375, 9375, 250, 1, 1953125, 625000, 65625, 2500, 25, 9765625, 3515625, 437500, 21875, 375, 1, 48828125, 19531250, 2812500, 175000, 4375, 30, 244140625, 107421875, 17578125, 1312500, 43750, 525, 1
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013612 ((1+5*x)^n).
The coefficients in the expansion of 1/(1-5x-x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 5.1925824035..., a metallic mean (see A098318), when n approaches infinity.

Examples

			Triangle begins:
            1;
            5;
           25,           1;
          125,          10;
          625,          75,          1;
         3125,         500,         15;
        15625,        3125,        150,         1;
        78125,       18750,       1250,        20;
       390625,      109375,       9375,       250,        1;
      1953125,      625000,      65625,      2500,       25;
      9765625,     3515625,     437500,     21875,      375,      1;
     48828125,    19531250,    2812500,    175000,     4375,     30;
    244140625,   107421875,   17578125,   1312500,    43750,    525,     1;
   1220703125,   585937500,  107421875,   9375000,   393750,   7000,    35;
   6103515625,  3173828125,  644531250,  64453125,  3281250,  78750,   700,  1;
  30517578125, 17089843750, 3808593750, 429687500, 25781250, 787500, 10500, 40;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 92, 380, 382.

Crossrefs

Row sums give A052918.
Cf. A000351 (column 0), A053464 (column 1), A081135 (column 2), A081143 (column 3), A036071 (column 4).
Cf. A013612.
Cf. A098318.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 5 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1/(1 - 5*t*x - t^2).

A305838 Triangle read by rows: T(0,0)= 1; T(n,k)= T(n-1,k) + 5*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 5, 1, 10, 1, 15, 25, 1, 20, 75, 1, 25, 150, 125, 1, 30, 250, 500, 1, 35, 375, 1250, 625, 1, 40, 525, 2500, 3125, 1, 45, 700, 4375, 9375, 3125, 1, 50, 900, 7000, 21875, 18750, 1, 55, 1125, 10500, 43750, 65625, 15625, 1, 60, 1375, 15000, 78750, 175000, 109375
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013612 ((1+5*x)^n). The coefficients in the expansion of 1/(1-x-5x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.7913327..., when n approaches infinity. The row sums are A015440 (generalized Fibonacci numbers).

Examples

			Triangle begins:
  1;
  1;
  1,  5;
  1, 10;
  1, 15,   25;
  1, 20,   75;
  1, 25,  150,   125;
  1, 30,  250,   500;
  1, 35,  375,  1250,    625;
  1, 40,  525,  2500,   3125;
  1, 45,  700,  4375,   9375,    3125;
  1, 50,  900,  7000,  21875,   18750;
  1, 55, 1125, 10500,  43750,   65625,   15625;
  1, 60, 1375, 15000,  78750,  175000,  109375;
  1, 65, 1650, 20625, 131250,  393750,  437500,   78125;
  1, 70, 1950, 27500, 206250,  787500, 1312500,  625000;
  1, 75, 2275, 35750, 309375, 1443750, 3281250, 2812500,  390625;
  1, 80, 2625, 45500, 446875, 2475000, 7218750, 9375000, 3515625;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 380, 381.

Crossrefs

Row sums give A015440.
Cf. A000012 (column 0), A008587 (column 1), A123296 (column 2), A141480 (column 3).
Cf. A013612.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0,  t[n - 1, k] + 5 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1/(1 - t*x - 5*t^2).
Showing 1-4 of 4 results.