A081579
Pascal-(1,4,1) array.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 16, 46, 16, 1, 1, 21, 106, 106, 21, 1, 1, 26, 191, 396, 191, 26, 1, 1, 31, 301, 1011, 1011, 301, 31, 1, 1, 36, 436, 2076, 3606, 2076, 436, 36, 1, 1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1, 1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 6, 11, 16, 21, ... A016861;
1, 11, 46, 106, 191, ... A081587;
1, 16, 106, 396, 1011, ... A081588;
1, 21, 191, 1011, 3606, ...
As triangle this begins:
1;
1, 1;
1, 6, 1;
1, 11, 11, 1;
1, 16, 46, 16, 1;
1, 21, 106, 106, 21, 1;
1, 26, 191, 396, 191, 26, 1;
1, 31, 301, 1011, 1011, 301, 31, 1;
1, 36, 436, 2076, 3606, 2076, 436, 36, 1;
1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1;
1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1; - _Philippe Deléham_, Mar 15 2014
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8).
-
A081579:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081579(n,k,4): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 5], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 5).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A038243
Triangle whose (i,j)-th entry is 5^(i-j)*binomial(i,j).
Original entry on oeis.org
1, 5, 1, 25, 10, 1, 125, 75, 15, 1, 625, 500, 150, 20, 1, 3125, 3125, 1250, 250, 25, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 78125, 109375, 65625, 21875, 4375, 525, 35, 1, 390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1, 1953125, 3515625, 2812500, 1312500, 393750, 78750, 10500, 900, 45, 1
Offset: 0
Triangle begins as:
1;
5, 1;
25, 10, 1;
125, 75, 15, 1;
625, 500, 150, 20, 1;
3125, 3125, 1250, 250, 25, 1;
15625, 18750, 9375, 2500, 375, 30, 1;
78125, 109375, 65625, 21875, 4375, 525, 35, 1;
390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1;
Sequences of the form q^(n-k)*binomial(n, k):
A007318 (q=1),
A038207 (q=2),
A027465 (q=3),
A038231 (q=4), this sequence (q=5),
A038255 (q=6),
A027466 (q=7),
A038279 (q=8),
A038291 (q=9),
A038303 (q=10),
A038315 (q=11),
A038327 (q=12),
A133371 (q=13),
A147716 (q=14),
A027467 (q=15).
-
[5^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 12 2021
-
for i from 0 to 8 do seq(binomial(i, j)*5^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 5^(n-1)); # Peter Luschny, Oct 09 2022
-
With[{q=5}, Table[q^(n-k)*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, May 12 2021 *)
-
flatten([[5^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 12 2021
A305837
Triangle read by rows: T(0,0) = 1; T(n,k) = 5*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 5, 25, 1, 125, 10, 625, 75, 1, 3125, 500, 15, 15625, 3125, 150, 1, 78125, 18750, 1250, 20, 390625, 109375, 9375, 250, 1, 1953125, 625000, 65625, 2500, 25, 9765625, 3515625, 437500, 21875, 375, 1, 48828125, 19531250, 2812500, 175000, 4375, 30, 244140625, 107421875, 17578125, 1312500, 43750, 525, 1
Offset: 0
Triangle begins:
1;
5;
25, 1;
125, 10;
625, 75, 1;
3125, 500, 15;
15625, 3125, 150, 1;
78125, 18750, 1250, 20;
390625, 109375, 9375, 250, 1;
1953125, 625000, 65625, 2500, 25;
9765625, 3515625, 437500, 21875, 375, 1;
48828125, 19531250, 2812500, 175000, 4375, 30;
244140625, 107421875, 17578125, 1312500, 43750, 525, 1;
1220703125, 585937500, 107421875, 9375000, 393750, 7000, 35;
6103515625, 3173828125, 644531250, 64453125, 3281250, 78750, 700, 1;
30517578125, 17089843750, 3808593750, 429687500, 25781250, 787500, 10500, 40;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 92, 380, 382.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 5 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
A305838
Triangle read by rows: T(0,0)= 1; T(n,k)= T(n-1,k) + 5*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 1, 1, 5, 1, 10, 1, 15, 25, 1, 20, 75, 1, 25, 150, 125, 1, 30, 250, 500, 1, 35, 375, 1250, 625, 1, 40, 525, 2500, 3125, 1, 45, 700, 4375, 9375, 3125, 1, 50, 900, 7000, 21875, 18750, 1, 55, 1125, 10500, 43750, 65625, 15625, 1, 60, 1375, 15000, 78750, 175000, 109375
Offset: 0
Triangle begins:
1;
1;
1, 5;
1, 10;
1, 15, 25;
1, 20, 75;
1, 25, 150, 125;
1, 30, 250, 500;
1, 35, 375, 1250, 625;
1, 40, 525, 2500, 3125;
1, 45, 700, 4375, 9375, 3125;
1, 50, 900, 7000, 21875, 18750;
1, 55, 1125, 10500, 43750, 65625, 15625;
1, 60, 1375, 15000, 78750, 175000, 109375;
1, 65, 1650, 20625, 131250, 393750, 437500, 78125;
1, 70, 1950, 27500, 206250, 787500, 1312500, 625000;
1, 75, 2275, 35750, 309375, 1443750, 3281250, 2812500, 390625;
1, 80, 2625, 45500, 446875, 2475000, 7218750, 9375000, 3515625;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 380, 381.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 5 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
Showing 1-4 of 4 results.
Comments