A038291
Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*1^j.
Original entry on oeis.org
1, 9, 1, 81, 18, 1, 729, 243, 27, 1, 6561, 2916, 486, 36, 1, 59049, 32805, 7290, 810, 45, 1, 531441, 354294, 98415, 14580, 1215, 54, 1, 4782969, 3720087, 1240029, 229635, 25515, 1701, 63, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 0
Triangle begins:
1
9, 1
81, 18, 1
729, 243, 27, 1
6561, 2916, 486, 36, 1
59049, 32805, 7290, 810, 45, 1
531441, 354294, 98415, 14580, 1215, 54, 1
4782969, 3720087, 1240029, 229635, 25515, 1701, 63, 1
43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
-
Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*9^(i-j)*1^j))); # Muniru A Asiru, Jul 21 2018
-
for i from 0 to 9 do seq(binomial(i, j)*9^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
-
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 9 t[n - 1, k] + t[n - 1, k - 1]];
Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 21 2018 *)
Table[CoefficientList[ Expand[(9 + x)^n], x], {n, 0, 8}] // Flatten (* Zagros Lalo, Jul 22 2018 *)
A317051
Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 9 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 1, 1, 9, 1, 18, 1, 27, 81, 1, 36, 243, 1, 45, 486, 729, 1, 54, 810, 2916, 1, 63, 1215, 7290, 6561, 1, 72, 1701, 14580, 32805, 1, 81, 2268, 25515, 98415, 59049, 1, 90, 2916, 40824, 229635, 354294, 1, 99, 3645, 61236, 459270, 1240029, 531441, 1, 108, 4455, 87480, 826686, 3306744, 3720087
Offset: 0
Triangle begins:
1;
1;
1, 9;
1, 18;
1, 27, 81;
1, 36, 243;
1, 45, 486, 729;
1, 54, 810, 2916;
1, 63, 1215, 7290, 6561;
1, 72, 1701, 14580, 32805;
1, 81, 2268, 25515, 98415, 59049;
1, 90, 2916, 40824, 229635, 354294;
1, 99, 3645, 61236, 459270, 1240029, 531441;
1, 108, 4455, 87480, 826686, 3306744, 3720087;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 100
-
Flat(List([0..13],n->List([0..Int(n/2)],k->9^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 20 2018
-
/* As triangle */ [[9^k*Binomial(n-k,k): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 05 2018
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 9 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
Table[9^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = 9^k*binomial(n-k,k);
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
A317052
Triangle read by rows: T(0,0) = 1; T(n,k) = 9*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 9, 81, 1, 729, 18, 6561, 243, 1, 59049, 2916, 27, 531441, 32805, 486, 1, 4782969, 354294, 7290, 36, 43046721, 3720087, 98415, 810, 1, 387420489, 38263752, 1240029, 14580, 45, 3486784401, 387420489, 14880348, 229635, 1215, 1, 31381059609, 3874204890, 172186884, 3306744, 25515, 54
Offset: 0
Triangle begins:
1;
9;
81, 1;
729, 18;
6561, 243, 1;
59049, 2916, 27;
531441, 32805, 486, 1;
4782969, 354294, 7290, 36;
43046721, 3720087, 98415, 810, 1;
387420489, 38263752, 1240029, 14580, 45;
3486784401, 387420489, 14880348, 229635, 1215, 1;
31381059609, 3874204890, 172186884, 3306744, 25515, 54;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 100.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 9 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 9*T(n-1, k)+T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
Showing 1-3 of 3 results.
Comments