cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A038291 Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*1^j.

Original entry on oeis.org

1, 9, 1, 81, 18, 1, 729, 243, 27, 1, 6561, 2916, 486, 36, 1, 59049, 32805, 7290, 810, 45, 1, 531441, 354294, 98415, 14580, 1215, 54, 1, 4782969, 3720087, 1240029, 229635, 25515, 1701, 63, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 0

Views

Author

Keywords

Comments

T(i,j) is the number of i-permutations of 10 objects a,b,c,d,e,f,g,h,i,j with repetition allowed, containing j a's. - Zerinvary Lajos, Dec 21 2007
Reflected version of A013616. - R. J. Mathar, Dec 19 2008
Triangle of coefficients in expansion of (9 + x)^n, where n is a nonnegative integer. - Zagros Lalo, Jul 21 2018

Examples

			Triangle begins:
  1
  9, 1
  81, 18, 1
  729, 243, 27, 1
  6561, 2916, 486, 36, 1
  59049, 32805, 7290, 810, 45, 1
  531441, 354294, 98415, 14580, 1215, 54, 1
  4782969, 3720087, 1240029, 229635, 25515, 1701, 63, 1
  43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48

Crossrefs

Programs

  • GAP
    Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*9^(i-j)*1^j))); # Muniru A Asiru, Jul 21 2018
  • Maple
    for i from 0 to 9 do seq(binomial(i, j)*9^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 9 t[n - 1, k] + t[n - 1, k - 1]];
    Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 21 2018 *)
    Table[CoefficientList[ Expand[(9 + x)^n], x], {n, 0, 8}] // Flatten  (* Zagros Lalo, Jul 22 2018 *)

Formula

T(0,0) = 1; T(n,k) = 9*T(n-1,k) + T(n-1,k-1) for k = 0..n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 21 2018

A317051 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 9 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 9, 1, 18, 1, 27, 81, 1, 36, 243, 1, 45, 486, 729, 1, 54, 810, 2916, 1, 63, 1215, 7290, 6561, 1, 72, 1701, 14580, 32805, 1, 81, 2268, 25515, 98415, 59049, 1, 90, 2916, 40824, 229635, 354294, 1, 99, 3645, 61236, 459270, 1240029, 531441, 1, 108, 4455, 87480, 826686, 3306744, 3720087
Offset: 0

Views

Author

Zagros Lalo, Jul 20 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013616 ((1+9*x)^n) and along skew diagonals pointing top-left in center-justified triangle given in A038291 ((9+x)^n).
The coefficients in the expansion of 1/(1-x-9*x^2) are given by the sequence generated by the row sums.
The row sums are Generalized Fibonacci numbers (see A015445).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.5413812651491... ((1+sqrt(37))/2), when n approaches infinity.

Examples

			Triangle begins:
  1;
  1;
  1, 9;
  1, 18;
  1, 27, 81;
  1, 36, 243;
  1, 45, 486, 729;
  1, 54, 810, 2916;
  1, 63, 1215, 7290, 6561;
  1, 72, 1701, 14580, 32805;
  1, 81, 2268, 25515, 98415, 59049;
  1, 90, 2916, 40824, 229635, 354294;
  1, 99, 3645, 61236, 459270, 1240029, 531441;
  1, 108, 4455, 87480, 826686, 3306744, 3720087;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 100

Crossrefs

Row sums give A015445.

Programs

  • GAP
    Flat(List([0..13],n->List([0..Int(n/2)],k->9^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 20 2018
    
  • Magma
    /* As triangle */ [[9^k*Binomial(n-k,k): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 05 2018
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 9 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
    Table[9^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = 9^k*binomial(n-k,k);
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
    

Formula

T(n,k) = 9^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).

A317052 Triangle read by rows: T(0,0) = 1; T(n,k) = 9*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 9, 81, 1, 729, 18, 6561, 243, 1, 59049, 2916, 27, 531441, 32805, 486, 1, 4782969, 354294, 7290, 36, 43046721, 3720087, 98415, 810, 1, 387420489, 38263752, 1240029, 14580, 45, 3486784401, 387420489, 14880348, 229635, 1215, 1, 31381059609, 3874204890, 172186884, 3306744, 25515, 54
Offset: 0

Views

Author

Zagros Lalo, Jul 20 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013616 ((1+9*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A038291 ((9+x)^n).
The coefficients in the expansion of 1/(1-9*x-x^2) are given by the sequence generated by the row sums (see A099371).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 9.109772228646443655... (a metallic mean), when n approaches infinity; (see A176522: ((9+sqrt(85))/2)).

Examples

			Triangle begins:
  1;
  9;
  81, 1;
  729, 18;
  6561, 243, 1;
  59049, 2916, 27;
  531441, 32805, 486, 1;
  4782969, 354294, 7290, 36;
  43046721, 3720087, 98415, 810, 1;
  387420489, 38263752, 1240029, 14580, 45;
  3486784401, 387420489, 14880348, 229635, 1215, 1;
  31381059609, 3874204890, 172186884, 3306744, 25515, 54;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 100.

Crossrefs

Row sums give A099371.
Cf. A001019 (column 0), A053540 (column 1), A081139 (column 2), A173187 (column 3), A173000 (column 4).

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 9 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 9*T(n-1, k)+T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
Showing 1-3 of 3 results.