A013708 a(n) = 3^(2*n+1).
3, 27, 243, 2187, 19683, 177147, 1594323, 14348907, 129140163, 1162261467, 10460353203, 94143178827, 847288609443, 7625597484987, 68630377364883, 617673396283947, 5559060566555523, 50031545098999707, 450283905890997363, 4052555153018976267, 36472996377170786403
Offset: 0
Links
- Delbert L. Johnson, Table of n, a(n) for n = 0..1047
- Tanya Khovanova, Recursive Sequences.
- R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 4.
- Index entries for linear recurrences with constant coefficients, signature (9).
Crossrefs
Cf. A000244.
Programs
-
Mathematica
NestList[9#&,3,20] (* Harvey P. Dale, Apr 21 2014 *)
-
PARI
a(n)=3^(2*n+1) \\ Charles R Greathouse IV, Aug 05 2015
-
Python
print([3**(2*n+1) for n in range(18)]) # Michael S. Branicky, Mar 27 2021
Formula
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 9*a(n-1), n > 0; a(0)=3.
G.f.: 3/(1-9*x). (End)
a(n) = A000244(2*n+1). - R. J. Mathar, Jul 10 2015
E.g.f.: 3*exp(9*x). - Stefano Spezia, Jul 09 2024
Comments