cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A225910 Square array read by antidiagonals: a(m,n) is the number of binary pattern classes in the (m,n)-rectangular grid, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 7, 6, 1, 1, 10, 24, 24, 10, 1, 1, 20, 76, 168, 76, 20, 1, 1, 36, 288, 1120, 1120, 288, 36, 1, 1, 72, 1072, 8640, 16576, 8640, 1072, 72, 1, 1, 136, 4224, 66816, 263680, 263680, 66816, 4224, 136, 1, 1, 272, 16576, 529920, 4197376, 8407040, 4197376, 529920, 16576, 272, 1
Offset: 0

Views

Author

Yosu Yurramendi, May 20 2013

Keywords

Comments

In the square table A000012, A005418, and A225826 to A225834 are the first 11 rows (see example).
In the square table, m odd (see formula). The order of the recurrence equations is 4. Let it be (a1(m),a2(m),a3(m),a4(m)) the characterizing 4-plet of a(m). The sequence a1(m) belongs to A028403 (2^m+2^((m+1)/2)), -a2(m) to A147538 (2^m*(2^((m+1)/2)-1)) and a4(m) to A013824 (2^(2m)*2^((m+1)/2)). -a3(m) sequence formula is 2^m*(2^m+2^((m+1)/2)).
All the coefficients of x in generating functions from A225826 to A225834 belong to A113979.

Examples

			Array begins:
  1   1      1         1            1               1                  1 ...
  1   2      3         6           10              20                 36 ...
  1   3      7        24           76             288               1072 ...
  1   6     24       168         1120            8640              66816 ...
  1  10     76      1120        16576          263680            4197376 ...
  1  20    288      8640       263680         8407040          268517376 ...
  1  36   1072     66816      4197376       268517376        17180065792 ...
  1  72   4224    529920     67133440      8590786560      1099516870656 ...
  1 136  16576   4212736   1073790976    274882625536     70368756760576 ...
  1 272  66048  33632256  17180262400   8796137062400   4503599962914816 ...
  1 528 262912 268713984 274878693376 281475261923328 288230376957018112 ...
  ...
		

Crossrefs

Formula

m even and n even:
a(m,n) = 2^(m*n/2-2)*(2^(m*n/2) + 3);
m even and n odd:
a(m,n) = 2^(m*n/2-1)*(2^(m*n/2-1) + 2^(m/2-1) + 1);
m odd and n even:
a(m,n) = 2^(m*n/2-1)*(2^(m*n/2-1) + 2^(n/2-1) + 1);
m odd and n odd:
a(m,n) = 2^((m*n-1)/2-1)*(2^((m*n-1)/2) + 2^((m-1)/2) + 2^((n-1)/2) + 1).
m even:
a(m,n) = 2^m*a(m,n-1) + 2^m*a(m,n-2) - (2^m)^2*a(m,n-3) with n>2, a(m,0)=1, a(m,1)=a(1,m), a(m,2)=a(2,m).
m odd:
a(m,n) = 2^m*a(m,n-1) + 2^m*a(m,n-2) - (2^m)^2*a(m,n-3) - 2^(((m+1)/2)*n-3)*(2^((m-1)/2)-1) with n>2, a(m,0)=1, a(m,1)=a(1,m), a(m,2)=a(2,m).
Only a(1,n) and a(2,n) (A005418 and A225826) sequences are needed to define the others.

A013823 a(n) = 2^(5*n + 2).

Original entry on oeis.org

4, 128, 4096, 131072, 4194304, 134217728, 4294967296, 137438953472, 4398046511104, 140737488355328, 4503599627370496, 144115188075855872, 4611686018427387904, 147573952589676412928, 4722366482869645213696, 151115727451828646838272, 4835703278458516698824704
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [2^(5*n+2): n in [0..15]]; // Vincenzo Librandi, Jul 07 2011
    
  • Mathematica
    2^(5*Range[0, 20] + 2) (* Paolo Xausa, Feb 21 2025 *)
  • Maxima
    makelist(2^(5*n+2),n,0,20); /* Martin Ettl, Oct 21 2012 */

Formula

From Philippe Deléham, Nov 24 2008: (Start)
a(n) = 32*a(n-1); a(0)=4.
G.f.: 4/(1-32*x).
a(n) = 4*A009976(n). (End)
From Elmo R. Oliveira, Feb 20 2025: (Start)
E.g.f.: 4*exp(32*x).
a(n) = A000079(A016873(n)). (End)
a(n) = 2*A013822(n) = A013824(n)/2. - Paolo Xausa, Feb 21 2025

A013896 a(n) = 20^(5*n + 3).

Original entry on oeis.org

8000, 25600000000, 81920000000000000, 262144000000000000000000, 838860800000000000000000000000, 2684354560000000000000000000000000000, 8589934592000000000000000000000000000000000, 27487790694400000000000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009964.

Programs

  • Magma
    [20^(5*n+3): n in [0..10]]; // Vincenzo Librandi, May 27 2011
  • Mathematica
    20^(5Range[0,20]+3) (* or *) NestList[3200000#&,8000,20] (* Harvey P. Dale, Dec 05 2021 *)

Formula

a(n) = 3200000*a(n-1), a(0)=8000. - Vincenzo Librandi, May 27 2011
From Elmo R. Oliveira, Jul 11 2025: (Start)
G.f.: 8000/(1-3200000*x).
E.g.f.: 8000*exp(3200000*x).
a(n) = A013824(n)*A013856(n) = A009964(A016885(n)). (End)

A386394 a(n) = (5^(2*n) + 3*2^(5*n-2))/7.

Original entry on oeis.org

7, 199, 5743, 168151, 4990207, 149920999, 4553331343, 139603087351, 4314710904607, 134256051681799, 4200826222176943, 132042253318646551, 4165747461421299007, 131813802646096802599, 4180788781690478542543, 132853918439479834845751, 4228042325697967752173407
Offset: 1

Views

Author

Stefano Spezia, Jul 20 2025

Keywords

Comments

a(n) is integer for n > 0.
Proof: It is sufficient to prove that 5^(2*n) + 3*2^(5*n-2) is divisible by 7. Since from 5 == -2 (mod 7) follows that 5^(2*n) == 2^(2*n) (mod 7) and from 2^5 == 2^2 (mod 7) follows 2^(5*n-2) == 2^(2*(n-1)) (mod 7), one gets that 5^(2*n) + 3*2^(5*n-2) == 2^(2*n) + 3*2^(2*(n-1)) (mod 7) and 2^(2*n) + 3*2^(2*(n-1)) = 2^(2*(n-1))*(4 + 3) == 0 (mod 7). QED

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 5.1.24 on page 158.

Crossrefs

Programs

  • Magma
    [(5^(2*n)+3*2^(5*n-2))/7 : n in [1..20]]; // Vincenzo Librandi, Jul 21 2025
  • Mathematica
    a[n_]:=(5^(2n)+3*2^(5n-2))/7; Array[a,17]

Formula

a(n) = 57*a(n-1) - 800*a(n-2) for n > 2.
G.f.: x*(7 - 200*x)/((1 - 25*x)*(1 - 32*x)).
E.g.f.: (3*exp(32*x) + 4*exp(25*x) - 7)/28.
a(n) = (A009969(n) + 3*A013824(n-1))/7.
Showing 1-4 of 4 results.