A013963 a(n) = sigma_15(n), the sum of the 15th powers of the divisors of n.
1, 32769, 14348908, 1073774593, 30517578126, 470199366252, 4747561509944, 35185445863425, 205891146443557, 1000030517610894, 4177248169415652, 15407492847694444, 51185893014090758, 155572843119354936, 437893920912786408, 1152956690052710401, 2862423051509815794
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(15, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
-
Mathematica
DivisorSigma[15, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
-
PARI
my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^15*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
-
PARI
a(n) = sigma(n, 15); \\ Amiram Eldar, Oct 29 2023
-
Sage
[sigma(n,15)for n in range(1,15)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^15*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-15)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(15*e+15)-1)/(p^15-1).
Sum_{k=1..n} a(k) = zeta(16) * n^16 / 16 + O(n^17). (End)
Comments