A013964 a(n) = sigma_16(n), the sum of the 16th powers of the divisors of n.
1, 65537, 43046722, 4295032833, 152587890626, 2821153019714, 33232930569602, 281479271743489, 1853020231898563, 10000152587956162, 45949729863572162, 184887084343023426, 665416609183179842, 2177986570740006274, 6568408508343827972, 18447025552981295105
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(16, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
-
Mathematica
DivisorSigma[16, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
-
PARI
my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^16*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
-
PARI
a(n) = sigma(n, 16); \\ Amiram Eldar, Oct 29 2023
-
Sage
[sigma(n,16)for n in range(1,14)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^16*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-16)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(16*e+16)-1)/(p^16-1).
Sum_{k=1..n} a(k) = zeta(17) * n^17 / 17 + O(n^18). (End)
Comments