A013966 a(n) = sigma_18(n), the sum of the 18th powers of the divisors of n.
1, 262145, 387420490, 68719738881, 3814697265626, 101560344351050, 1628413597910450, 18014467229220865, 150094635684419611, 1000003814697527770, 5559917313492231482, 26623434909949071690, 112455406951957393130, 426880482624234915250, 1477891883850485076740
Offset: 1
Links
Programs
-
Magma
[DivisorSigma(18,n): n in [1..50]]; // G. C. Greubel, Nov 03 2018
-
Mathematica
Table[DivisorSigma[18,n],{n,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
-
PARI
a(n)=sigma(n,18) \\ Charles R Greathouse IV, Apr 28 2011
-
Sage
[sigma(n,18)for n in range(1,13)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^18*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(18*e+18)-1)/(p^18-1).
Dirichlet g.f.: zeta(s)*zeta(s-18).
Sum_{k=1..n} a(k) = zeta(19) * n^19 / 19. + O(n^20). (End)
Comments