A013967 a(n) = sigma_19(n), the sum of the 19th powers of the divisors of n.
1, 524289, 1162261468, 274878431233, 19073486328126, 609360902796252, 11398895185373144, 144115462954287105, 1350851718835253557, 10000019073486852414, 61159090448414546292, 319480609006403630044, 1461920290375446110678, 5976315357844100294616
Offset: 1
Links
Programs
-
Magma
[DivisorSigma(19,n): n in [1..50]]; // G. C. Greubel, Nov 03 2018
-
Mathematica
Table[DivisorSigma[19,n],{n,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
-
PARI
vector(50, n, sigma(n,19)) \\ G. C. Greubel, Nov 03 2018
-
Sage
[sigma(n,19)for n in range(1,13)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^19*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(19*e+19)-1)/(p^19-1).
Dirichlet g.f.: zeta(s)*zeta(s-19).
Sum_{k=1..n} a(k) = zeta(20) * n^20 / 20 + O(n^21). (End)
Comments