A013968 a(n) = sigma_20(n), the sum of the 20th powers of the divisors of n.
1, 1048577, 3486784402, 1099512676353, 95367431640626, 3656161927895954, 79792266297612002, 1152922604119523329, 12157665462543713203, 100000095367432689202, 672749994932560009202, 3833763649708914645906, 19004963774880799438802, 83668335217551100221154
Offset: 1
Links
Programs
-
Magma
[DivisorSigma(20,n): n in [1..50]]; // G. C. Greubel, Nov 03 2018
-
Mathematica
DivisorSigma[20,Range[20]] (* Harvey P. Dale, Jul 26 2015 *)
-
PARI
vector(50, n, sigma(n,20)) \\ G. C. Greubel, Nov 03 2018
-
Sage
[sigma(n,20)for n in range(1,13)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^20*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(20*e+20)-1)/(p^20-1).
Dirichlet g.f.: zeta(s)*zeta(s-20).
Sum_{k=1..n} a(k) = zeta(21) * n^21 / 21 + O(n^22). (End)
Comments