A013969 a(n) = sigma_21(n), the sum of the 21st powers of the divisors of n.
1, 2097153, 10460353204, 4398048608257, 476837158203126, 21936961102828212, 558545864083284008, 9223376434903384065, 109418989141972712413, 1000000476837160300278, 7400249944258160101212, 46005141850728850805428, 247064529073450392704414, 1171356134499851307229224
Offset: 1
Links
Programs
-
Magma
[DivisorSigma(21,n): n in [1..50]]; // G. C. Greubel, Nov 03 2018
-
Mathematica
Table[DivisorSigma[21,n],{n,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
-
PARI
vector(50, n, sigma(n,21)) \\ G. C. Greubel, Nov 03 2018
-
Sage
[sigma(n,21)for n in range(1,13)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^21*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Sum_{n>=1} a(n)/exp(2*Pi*n) = 77683/552 = Bernoulli(22)/44. - Vaclav Kotesovec, May 07 2023
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(21*e+21)-1)/(p^21-1).
Dirichlet g.f.: zeta(s)*zeta(s-21).
Sum_{k=1..n} a(k) = zeta(22) * n^22 / 22 + O(n^23). (End)
Comments