A013971 a(n) = sigma_23(n), the sum of the 23rd powers of the divisors of n.
1, 8388609, 94143178828, 70368752566273, 11920928955078126, 789730317205170252, 27368747340080916344, 590295880727458217985, 8862938119746644274757, 100000011920928963466734, 895430243255237372246532, 6624738056749922960468044, 41753905413413116367045798
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harvey P. Dale)
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(23,n): n in [1..30]]; // G. C. Greubel, Nov 03 2018
-
Mathematica
DivisorSigma[23,Range[15]] (* Harvey P. Dale, May 02 2016 *)
-
PARI
vector(30, n, sigma(n,23)) \\ G. C. Greubel, Nov 03 2018
-
Sage
[sigma(n,23)for n in range(1,12)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^23*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(23*e+23)-1)/(p^23-1).
Dirichlet g.f.: zeta(s)*zeta(s-23).
Sum_{k=1..n} a(k) = zeta(24) * n^24 / 24 + O(n^25). (End)
Comments