cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013971 a(n) = sigma_23(n), the sum of the 23rd powers of the divisors of n.

Original entry on oeis.org

1, 8388609, 94143178828, 70368752566273, 11920928955078126, 789730317205170252, 27368747340080916344, 590295880727458217985, 8862938119746644274757, 100000011920928963466734, 895430243255237372246532, 6624738056749922960468044, 41753905413413116367045798
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(23,n): n in [1..30]]; // G. C. Greubel, Nov 03 2018
  • Mathematica
    DivisorSigma[23,Range[15]] (* Harvey P. Dale, May 02 2016 *)
  • PARI
    vector(30, n, sigma(n,23)) \\ G. C. Greubel, Nov 03 2018
    
  • Sage
    [sigma(n,23)for n in range(1,12)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^23*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(23*e+23)-1)/(p^23-1).
Dirichlet g.f.: zeta(s)*zeta(s-23).
Sum_{k=1..n} a(k) = zeta(24) * n^24 / 24 + O(n^25). (End)