A013972 a(n) = sigma_24(n), the sum of the 24th powers of the divisors of n.
1, 16777217, 282429536482, 281474993487873, 59604644775390626, 4738381620767930594, 191581231380566414402, 4722366764344638701569, 79766443077154939399843, 1000000059604644792167842, 9849732675807611094711842, 79496851942053939878082786, 542800770374370512771595362
Offset: 1
Links
Programs
-
Magma
[DivisorSigma(24,n): n in [1..50]]; // G. C. Greubel, Nov 03 2018
-
Mathematica
Table[DivisorSigma[24,n],{n,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
-
PARI
a(n)=sigma(n,24) \\ Charles R Greathouse IV, Apr 28 2011
-
Sage
[sigma(n,24)for n in range(1,12)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^24*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(24*e+24)-1)/(p^24-1).
Dirichlet g.f.: zeta(s)*zeta(s-24).
Sum_{k=1..n} a(k) = zeta(25) * n^25 / 25 + O(n^26). (End)
Comments