cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013999 From applying the "rational mean" to the number e.

Original entry on oeis.org

1, 1, 2, 8, 42, 258, 1824, 14664, 132360, 1326120, 14606640, 175448160, 2282469840, 31972303440, 479793807360, 7679384173440, 130586660507520, 2351111258805120, 44679858911251200, 893744703503769600, 18771276190401504000, 413017883356110278400
Offset: 0

Views

Author

Domingo Gomez Morin (Dgomezm(AT)etheron.net)

Keywords

Comments

Binomial transform of A000271. - Vladeta Jovovic, Jun 26 2007
Conjecture: this is also the number of acyclic orientations of the complement of the path graph. - Martin Rubey, Oct 15 2023

Crossrefs

Cf. A000271.

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[k!*(x*(1-x))^k,{k,0,n}],{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 07 2012 *)
  • Maxima
    makelist(sum(binomial(n-k+1,k)*(-1)^k*(n-k+1)!,k,0,floor((n+1)/2)),n,0,20); /* Emanuele Munarini, Jul 01 2013 */

Formula

G.f.: Sum_{n>=0} n!*(x*(1-x))^n. - Vladeta Jovovic, Jun 26 2007
Recurrence: a(n) = (n+3)*a(n-1) - (2*n+1)*a(n-2) + n*a(n-3). - Vaclav Kotesovec, Oct 07 2012
G.f.: 1/Q(0), where Q(k)= 1 + x/(1-x) - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 21 2013
a(n) = sum(binomial(n-k+1,k)*(-1)^k*(n-k+1)!, k=0..floor((n+1)/2)). - Emanuele Munarini, Jul 01 2013
a(n) ~ n!*n/exp(1). - Vaclav Kotesovec, Jul 06 2013