A013999 From applying the "rational mean" to the number e.
1, 1, 2, 8, 42, 258, 1824, 14664, 132360, 1326120, 14606640, 175448160, 2282469840, 31972303440, 479793807360, 7679384173440, 130586660507520, 2351111258805120, 44679858911251200, 893744703503769600, 18771276190401504000, 413017883356110278400
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Domingo Gómez Morín, New Elements For The Irrational Numbers, Journal of Transfigural Mathematics, Vol. 2, No. 1, 1996.
- R. P. Stanley, An Equivalence Relation on the Symmetric Group and Multiplicity-free Flag h-Vectors, preprint, 2008. - From _N. J. A. Sloane_, May 06 2012
Crossrefs
Cf. A000271.
Programs
-
Mathematica
Table[SeriesCoefficient[Sum[k!*(x*(1-x))^k,{k,0,n}],{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 07 2012 *)
-
Maxima
makelist(sum(binomial(n-k+1,k)*(-1)^k*(n-k+1)!,k,0,floor((n+1)/2)),n,0,20); /* Emanuele Munarini, Jul 01 2013 */
Formula
G.f.: Sum_{n>=0} n!*(x*(1-x))^n. - Vladeta Jovovic, Jun 26 2007
Recurrence: a(n) = (n+3)*a(n-1) - (2*n+1)*a(n-2) + n*a(n-3). - Vaclav Kotesovec, Oct 07 2012
G.f.: 1/Q(0), where Q(k)= 1 + x/(1-x) - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 21 2013
a(n) = sum(binomial(n-k+1,k)*(-1)^k*(n-k+1)!, k=0..floor((n+1)/2)). - Emanuele Munarini, Jul 01 2013
a(n) ~ n!*n/exp(1). - Vaclav Kotesovec, Jul 06 2013
Comments