cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A227037 Partial sums of A013999.

Original entry on oeis.org

1, 2, 4, 12, 54, 312, 2136, 16800, 149160, 1475280, 16081920, 191530080, 2473999920, 34446303360, 514240110720, 8193624284160, 138780284791680, 2489891543596800, 47169750454848000, 940914453958617600, 19712190644360121600
Offset: 0

Views

Author

Emanuele Munarini, Jul 01 2013

Keywords

Crossrefs

Cf. A013999.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 2^n,
          (n+3)*a(n-1) -2*(n+1)*a(n-2) +(n+1)*a(n-3))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 01 2013
  • Mathematica
    Table[Sum[Sum[Binomial[j-k+1,k]*(-1)^k*(j-k+1)!,{k,0,Floor[(j+1)/2]}],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 06 2013 *)
  • Maxima
    makelist(sum(sum(binomial(j-k+1,k)*(-1)^k*(j-k+1)!, k,0,floor((j+1)/2)), j, 0, n), n, 0, 20);

Formula

a(n) = sum(A013999(k), k=0..n).
a(n) = sum(sum(C(j-k+1,k)*(-1)^k*(j-k+1)!, k=0..floor((j+1)/2)), j=0..n).
Recurrence: a(n+4) -(n+8)*a(n+3) +(3*n+16)*a(n+2) -(3*n+13)*a(n+1) +(n+4)*a(n) = 0.
G.f.: Sum_{k>=0} (k+1)!*(x-x^2)^k.
a(n) = (n+3)*a(n-1)-2*(n+1)*a(n-2)+(n+1)*a(n-3) for n>2, a(n) = 2^n for n<=2. - Alois P. Heinz, Jul 01 2013
a(n) ~ n!*n/exp(1). - Vaclav Kotesovec, Jul 06 2013

A227096 Self-convolution of A013999.

Original entry on oeis.org

1, 2, 5, 20, 104, 632, 4396, 34680, 307236, 3026472, 32849364, 389704800, 5017492320, 69678231552, 1038078389376, 16513758904320, 279354776803200, 5007072973075200, 94783054774919040, 1889504358498754560, 39565281716813111040, 868194780280625779200
Offset: 0

Views

Author

Emanuele Munarini, Jul 01 2013

Keywords

Crossrefs

Cf. A013999.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<6, [1, 2, 5, 20, 104, 632][n+1],
          ((3*n+10)*(n+3)*a(n-1) -(n+13)*(n+2)^2*a(n-2)
           +(n+3)*(4*n^2+19*n+2)*a(n-3) -2*(n+2)*(3*n^2+6*n-4)*a(n-4)
           +(4*n^3+8*n^2-12*n-4)*a(n-5) -n*(n+3)*(n-2)*a(n-6))/(2*n+4))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 01 2013
  • Mathematica
    f[n_] := Sum[Binomial[n-k+1, k] (-1)^k (n-k+1)!, {k, 0, Quotient[n+1, 2]}];
    a[n_] := Sum[f[k] f[n-k], {k, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 14 2023 *)
  • Maxima
    f(n):=sum(binomial(n-k+1, k)*(-1)^k*(n-k+1)!, k, 0, floor((n+1)/2)); a(n):=sum(f(k)*f(n-k), k, 0, n); makelist(a(n), n, 0, 20);

Formula

a(n) = sum(A013999(k)*A013999(n-k), k=0..n).
G.f.: sum(B(k)*k!*x^(k-2)*(1-x)^k, k>=2), where B(k) = sum(1/C(k,i), i=1..k-1).
a(n) ~ 2*n*n!/exp(1). - Vaclav Kotesovec, Jul 08 2013

A227094 Binomial transform of A013999.

Original entry on oeis.org

1, 2, 5, 18, 91, 574, 4199, 34650, 318645, 3237034, 36041657, 436713506, 5722676895, 80654047942, 1216703923147, 19562850695690, 333991034593833, 6034449711055890, 115036771019660269, 2307582082535387570, 48588759062255598563, 1071533741191907032590
Offset: 0

Views

Author

Emanuele Munarini, Jul 01 2013

Keywords

Crossrefs

Cf. A013999.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 2, 5, 18][n+1],
          (n+6)*a(n-1)-(5*n+7)*a(n-2)+(8*n-7)*a(n-3)-(4*n-12)*a(n-4))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 01 2013
  • Mathematica
    a[n_] := a[n] = If[n < 4, {1, 2, 5, 18}[[n + 1]], (n + 6)*a[n - 1] - (5*n + 7)*a[n - 2] + (8*n - 7)*a[n - 3] - (4*n - 12)*a[n - 4]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 04 2018, from Maple *)
  • Maxima
    f(n):=sum(binomial(n-k+1,k)*(-1)^k*(n-k+1)!, k, 0, floor((n+1)/2)); a(n):=sum(binomial(n,k)*f(k), k, 0, n); makelist(a(n), n,0,20);

Formula

a(n) = sum(C(n,k)*A013999(k), k=0..n).
G.f.: sum(k!*x^(k-1)*(1-2*x)^k/(1-x)^(2*k), k>=1).
a(n) ~ n * n!. - Vaclav Kotesovec, Nov 02 2023

A127548 O.g.f.: Sum_{n>=0} n!*(x/(1+x)^2)^n.

Original entry on oeis.org

1, 1, 0, 1, 4, 19, 112, 771, 6088, 54213, 537392, 5867925, 69975308, 904788263, 12607819040, 188341689287, 3002539594128, 50878366664393, 913161208490016, 17304836525709097, 345279674107957524, 7235298537356113339
Offset: 0

Views

Author

Vladeta Jovovic, Jun 27 2007

Keywords

Comments

a(n+1) = inverse binomial transform of A013999 = Sum_{k=0..n} binomial(n,k)*(-1)^(n-k)*A013999(k). - Emanuele Munarini, Jul 01 2013

Crossrefs

Programs

  • Maple
    A127548 := proc(n) if n = 0 then 1 ; else add(factorial(s)*(-1)^(n-s)*binomial(s+n-1,2*s-1),s=1..n) ; fi ; end: for n from 0 to 20 do printf("%d,",A127548(n)) ; od ; # R. J. Mathar, Jul 13 2007
  • Mathematica
    nn = 21; CoefficientList[Series[Sum[n!*(x/(1 + x)^2)^n, {n, 0, nn}], {x, 0, nn}], x] (* Michael De Vlieger, Sep 04 2016 *)
  • Python
    import math
    def binomial(n,m):
        a=1
        for k in range(n-m+1,n+1):
            a *= k
        return a//math.factorial(m)
    def A127548(n):
        if n == 0:
            return 1
        a=0
        for s in range(1,n+1):
            a += (-1)**(n-s)*binomial(s+n-1,2*s-1)*math.factorial(s)
        return a
    for n in range(30):
        print(A127548(n))
    # R. J. Mathar, Oct 20 2009

Formula

a(n) = Sum_{s=1..n} (-1)^(n-s)*s!*C(s+n-1,2s-1) if n>=1, where C(a,b)=binomial(a,b). - R. J. Mathar, Jul 13 2007
G.f.: Q(0) where Q(k) = 1 + (2*k + 1)*x/( (1+x)^2- 2*x*(1+x)^2*(k+1)/(2*x*(k+1) + (1+x)^2/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 08 2013
a(n) = A000271(n) + A000271(n-1). - Peter Bala, Sep 02 2016
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Oct 31 2017

Extensions

More terms from R. J. Mathar, Jul 13 2007
More terms from R. J. Mathar, Oct 20 2009

A184185 Number of permutations of {1,2,...,n} having no cycles of the form (i, i+1, i+2, ..., i+j-1) (j >= 1).

Original entry on oeis.org

1, 0, 0, 1, 6, 34, 216, 1566, 12840, 117696, 1193760, 13280520, 160841520, 2107021680, 29689833600, 447821503920, 7199590366080, 122907276334080, 2220524598297600, 42328747652446080, 849064844592518400, 17877531486897734400, 394246607165708774400
Offset: 0

Views

Author

Emeric Deutsch, Feb 16 2011 (based on communication from Vladeta Jovovic)

Keywords

Comments

a(n) = A184184(n,0).

Examples

			a(4)=6 because we have (13)(24), (1432), (1342), (1423), (1243), and (1324).
		

Crossrefs

Programs

  • Maple
    a := proc(n) add((-1)^(n-i)*factorial(i)*binomial(i+1, n-i), i = ceil((1/2)*n-1/2) .. n) end proc: seq(a(n), n = 0 .. 22);
  • Mathematica
    a[n_] := Sum[(-1)^(n-i)*i!*Binomial[i+1, n-i], {i, Ceiling[(n-1)/2], n}];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Nov 29 2017, from Maple *)
  • PARI
    a(n) = sum(k=n\2, n, (-1)^(n-k)*k!*binomial(k+1, n-k)); \\ Seiichi Manyama, Nov 30 2021
    
  • PARI
    a(n) = if(n<3, 0^n, (n+2)*a(n-1)-2*(n-1)*a(n-2)+(n-2)*a(n-3)); \\ Seiichi Manyama, Nov 30 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k*(1-x)^(k+1))) \\ Seiichi Manyama, Nov 30 2021

Formula

G.f.: (1-z)*F(z-z^2), where F(z) = Sum_{j>=0} j!*z^j (private communication from Vladeta Jovovic, May 26 2009).
a(n) = Sum_{i=ceiling((n-1)/2)..n} (-1)^(n-i)*i!*binomial(i+1,n-i).
G.f.: 1/Q(0), where Q(k) = 1 + x/(1-x) - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ n! / exp(1) * (1 - 1/n - 1/(2*n^2) - 2/(3*n^3) - 23/(24*n^4) - 151/(120*n^5) - 119/(720*n^6) + 14789/(1260*n^7) + 1223843/(13440*n^8) + ...). - Vaclav Kotesovec, Nov 30 2021
a(n) = (n+2) * a(n-1) - 2 * (n-1) * a(n-2) + (n-2) * a(n-3) for n > 2. - Seiichi Manyama, Nov 30 2021

A307495 Expansion of Sum_{k>=0} k!*((1 - sqrt(1 - 4*x))/2)^k.

Original entry on oeis.org

1, 1, 3, 12, 57, 312, 1950, 13848, 111069, 998064, 9957186, 109305240, 1309637274, 17006109072, 237888664572, 3566114897520, 57030565449765, 969154436550240, 17439499379433690, 331268545604793240, 6624013560942038670, 139080391965533653200, 3059323407592802838180, 70355685298375014175440
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Comments

Catalan transform of A000142 (factorial numbers).
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting the sequence of factorial numbers in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
1
1 1
2 3 3
6 9 12 12
24 33 45 57 57
120 153 198 255 312 312
...
Alternatively, the sequence can be obtained by multiplying the sequence of factorial numbers by the array A106566.
(End)

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Sum[k! ((1 - Sqrt[1 - 4 x])/2)^k, {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 23; CoefficientList[Series[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2] (1 - Sqrt[1 - 4 x])/2, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
    Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k k!, {k, n}], {n, 23}]]

Formula

G.f.: 1 /(1 - x*c(x)/(1 - x*c(x)/(1 - 2*x*c(x)/(1 - 2*x*c(x)/(1 - 3*x*c(x)/(1 - 3*x*c(x)/(1 - ...))))))), a continued fraction, where c(x) = g.f. of Catalan numbers (A000108).
Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000142.
a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*k! for n > 0.
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Aug 10 2019

A370508 Expansion of Sum_{k>=0} k! * ( x * (1-x^3) )^k.

Original entry on oeis.org

1, 1, 2, 6, 23, 116, 702, 4944, 39722, 358578, 3593664, 39595440, 475746474, 6190838544, 86740334160, 1301939398080, 20842001737224, 354469125185880, 6382790173842480, 121310821042966800, 2426863248540057480, 50975836645480342560, 1121691979824460425360
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1-x^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*(n-3*k)!*binomial(n-3*k, k));

Formula

a(n) = Sum_{k=0..floor(n/4)} (-1)^k * (n-3*k)! * binomial(n-3*k,k).

A184184 Triangle read by rows: T(n,k) is the number of permutations of [n] having k adjacent cycles (0 <= k <= n). An adjacent cycle is a cycle of the form (i, i+1, i+2, ...) (including 1-element cycles).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 6, 8, 6, 3, 1, 34, 42, 27, 12, 4, 1, 216, 258, 156, 64, 20, 5, 1, 1566, 1824, 1068, 420, 125, 30, 6, 1, 12840, 14664, 8400, 3220, 930, 216, 42, 7, 1, 117696, 132360, 74580, 28080, 7950, 1806, 343, 56, 8, 1, 1193760, 1326120, 737640, 273960, 76440, 17094, 3192, 512, 72, 9, 1
Offset: 0

Views

Author

Emeric Deutsch, Feb 16 2011 (based on communication from Vladeta Jovovic)

Keywords

Comments

Sum of entries in row n is n!.
T(n,0) = A184185(n).
T(n,1) = A013999(n-1).
Sum_{k>=0} k*T(n,k) = 1! + 2! + ... + n! = A007489(n).

Examples

			T(3,2) = 2 because we have (1)(23) and (12)(3).
T(4,2) = 6 because we have (1)(234), (1)(24)(3), (12)(34), (123)(4), (14)(2)(3), and (13)(2)(4).
Triangle starts:
   1;
   0,  1;
   0,  1,  1;
   1,  2,  2,  1;
   6,  8,  6,  3,  1;
  34, 42, 27, 12,  4,  1;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) options operator, arrow: add((-1)^(n-k-i)*factorial(k+i)*binomial(i+1, n-k-i), i = ceil((1/2)*n-(1/2)*k-1/2) .. n-k)/factorial(k) end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form

Formula

G.f. of column k is (1/k!)*z^k*(1-z)*Sum_{i>=0} (k+i)!*(z-z^2)^i (private communication from Vladeta Jovovic, May 26 2009).
T(n,k) = (1/k!)*Sum_{i=ceiling((n-k-1)/2)..n-k} (-1)^(n-k-i)*(k+i)!*binomial(i+1, n-k-i).
The bivariate g.f. is G(t,z) = ((1-z)/(1-tz))*F((z-z^2)/(1-tz)), where F(z) = Sum_{j>=0} j!*z^j.
Showing 1-8 of 8 results.