A014020 Inverse of 11th cyclotomic polynomial.
1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1, -1, -1, -1, -1, -1, -1, -1, -1, -1).
- Index to sequences related to inverse of cyclotomic polynomials
Crossrefs
Cf. A010880.
Programs
-
Magma
&cat[[1,-1,0,0,0,0,0,0,0,0,0]: n in [0..15]]; // Vincenzo Librandi, Apr 03 2014
-
Maple
with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);
-
Mathematica
CoefficientList[Series[1/Cyclotomic[11, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 03 2014 *) LinearRecurrence[{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},{1, -1, 0, 0, 0, 0, 0, 0, 0, 0},81] (* Ray Chandler, Sep 15 2015 *)
-
PARI
Vec(1/polcyclo(11)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014
Formula
G.f.: 1/(1 + x + x^2 + x^3 + ... + x^10). - R. J. Mathar, Aug 11 2012
a(n) = (11*m^10 - 595*m^9 + 13980*m^8 - 186990*m^7 + 1566663*m^6 - 8513715*m^5 + 29974570*m^4 - 65946860*m^3 + 82751976*m^2 - 46916640*m + 3628800)/3628800, where m = n mod 11. - Luce ETIENNE, Sep 20 2018
Comments