A014127 Mirimanoff primes: primes p such that p^2 divides 3^(p-1) - 1.
11, 1006003
Offset: 1
References
- Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979, pp. 23, 152-153.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.
- Alf van der Poorten, Notes on Fermat's Last Theorem, Wiley, 1996, p. 21.
Links
- Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
- Chris K. Caldwell, Fermat Quotient, The Prime Glossary.
- John Blythe Dobson, On the special harmonic numbers H_floor(p/9) and H_floor(p/18) modulo p, arXiv:2302.02027 [math.NT], 2023.
- François G. Dorais and Dominic Klyve, A Wieferich prime search up to p < 6.7*10^15, J. Integer Seq., Vol. 14 (2011), Article 11.9.2, 1-14.
- Wilfrid Keller and Jörg Richstein, Solutions of the congruence a^(p-1) == 1 (mod p^r), Math. Comp., Vol. 74, No. 250 (2005), pp. 927-936.
- K. E. Kloss, Some Number-Theoretic Calculations, Journal of Research of the National Bureau of Standards - B. Mathematics and Mathematical Physics, Vol. 69B, No. 4 (Oct.-Dec. 1965), pp. 335-336.
- Mathias Lerch, Zur Theorie des Fermatschen Quotienten (a^(p-1) - 1)/p == q(a), Mathematische Annalen, Vol. 60 (1905), pp. 471-490.
- D. Mirimanoff, Sur le dernier théorème de Fermat, C. R. Acad. Sci. Paris, Vol. 150 (1910), pp. 204-206. Revised as Sur le dernier théorème de Fermat, Journal für die reine und angewandte Mathematik, Vol. 139 (1911), pp. 309-324.
- Planet Math, Wieferich Primes.
- Reese Scott and Robert Styer, On the generalized Pillai equation +-a^x +-b^y = c, Journal of Number Theory, Vol. 118, No. 2 (2006), pp. 236-265.
Crossrefs
Sequences "primes p such that p^2 divides X^(p-1)-1": A001220 (X=2), A123692 (X=5), A212583 (X=6), A123693 (X=7), A045616 (X=10), A111027 (X=12), A128667 (X=13), A234810 (X=14), A242741 (X=15), A128668 (X=17), A244260 (X=18), A090968 (X=19), A242982 (X=20), A298951 (X=22), A128669 (X=23), A306255 (X=26), A306256 (X=30).
Programs
-
Mathematica
Select[Prime[Range[1000000]], PowerMod[3, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
-
PARI
N=10^9; default(primelimit,N); forprime(n=2,N,if(Mod(3,n^2)^(n-1)==1,print1(n,", "))); \\ Joerg Arndt, May 01 2013
-
Python
from sympy import prime from gmpy2 import powmod A014127_list = [p for p in (prime(n) for n in range(1,10**7)) if powmod(3,p-1,p*p) == 1] # Chai Wah Wu, Dec 03 2014
Extensions
Edited by Max Alekseyev, Oct 20 2010
Updated by Max Alekseyev, Jan 29 2012
Comments