A014153 Expansion of 1/((1-x)^2*Product_{k>=1} (1-x^k)).
1, 3, 7, 14, 26, 45, 75, 120, 187, 284, 423, 618, 890, 1263, 1771, 2455, 3370, 4582, 6179, 8266, 10980, 14486, 18994, 24757, 32095, 41391, 53123, 67865, 86325, 109350, 137979, 173450, 217270, 271233, 337506, 418662, 517795, 638565, 785350, 963320, 1178628
Offset: 0
Keywords
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- Mircea Merca and Maxie D. Schmidt, The partition function p(n) in terms of the classical Möbius function, arXiv:2310.13658 [math.CO], 2023.
Crossrefs
Programs
-
Magma
m:=45; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/((1-x)^2*(&*[1-x^k: k in [1..50]])) )); // G. C. Greubel, Oct 15 2018 -
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add((2+sigma(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Feb 13 2012
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[(2+DivisorSigma[1, j])*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *) Table[Sum[(n-k)*PartitionsP[k],{k,0,n}],{n,1,50}] (* Vaclav Kotesovec, Jun 23 2015 *) t[n_, k_] := Sum[StirlingS1[n, j]* Binomial[i + j - 1, i]* PartitionsP[k - n - i], {j, 0, n}, {i, 0, k - n}]; Print@ Table[t[n, k], {k, 10}, {n, 0, k - 1}]; Table[t[2, k], {k, 3, 43}] (* George Beck, May 25 2016 *)
-
PARI
x='x+O('x^45); Vec(1/((1-x)^2*prod(k=1,50, 1-x^k))) \\ G. C. Greubel, Oct 15 2018
Formula
Let t(n_, k_) = Sum_{i = 0..k} Sum_{j = 0..n} s(n, j)*C(i, j)*p(k - n - i), where s(n, j) are Stirling numbers of the first kind, C(i, j) are the number of compositions of i distinct objects into j parts, and p is the integer partition function. Then a(k) = t(2, k+2) (conjectured). The formula for t(n, k) is the same as at A126442 except that there the Stirling numbers are of the second kind. - George Beck, May 21 2016
a(n) ~ exp(sqrt(2*n/3)*Pi)*sqrt(3)/(2*Pi^2) * (1 + 23*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Nov 04 2016
Comments