cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014160 Apply partial sum operator thrice to partition numbers.

Original entry on oeis.org

1, 4, 11, 25, 51, 96, 171, 291, 478, 762, 1185, 1803, 2693, 3956, 5727, 8182, 11552, 16134, 22313, 30579, 41559, 56045, 75039, 99796, 131891, 173282, 226405, 294270, 380595, 489945, 627924, 801374, 1018644
Offset: 0

Views

Author

Keywords

Comments

A014160 convolved with A010815 = A000217, the triangular numbers. - Gary W. Adamson, Nov 09 2008
Unordered partitions of n into parts where the part 1 comes in 4 colors. - Peter Bala, Dec 23 2013
From Omar E. Pol, Mar 01 2023: (Start)
Partial sums of A014153.
Convolution of A000070 and A000027.
Convolution of A000041 and the positive terms of A000217.
Convolution of A002865 and the positive terms of A000292. (End)

Crossrefs

Cf. A010815, A000217. - Gary W. Adamson, Nov 09 2008
Column k=4 of A292508.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/((1-x)^3 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)

Formula

From Peter Bala, Dec 23 2013: (Start)
O.g.f.: 1/(1 - x)^3 * Product_{k >= 1} 1/(1 - x^k).
a(n-1) + a(n-2) = Sum_{parts k in all partitions of n} J_2(k), where J_2(n) is the Jordan totient function A007434(n). (End)
a(n) ~ 3*sqrt(n) * exp(Pi*sqrt(2*n/3)) / (sqrt(2)*Pi^3). - Vaclav Kotesovec, Oct 30 2015
a(n) = Sum_{k=0..n} A014153(k). - Sean A. Irvine, Oct 14 2018