cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014162 Apply partial sum operator thrice to Fibonacci numbers.

Original entry on oeis.org

0, 1, 4, 11, 25, 51, 97, 176, 309, 530, 894, 1490, 2462, 4043, 6610, 10773, 17519, 28445, 46135, 74770, 121115, 196116, 317484, 513876, 831660, 1345861, 2177872, 3524111, 5702389, 9226935, 14929789
Offset: 0

Views

Author

Keywords

Comments

With offset 4, number of 132-avoiding two-stack sortable permutations which contain exactly one subsequence of type 51234.

Crossrefs

Right-hand column 6 of triangle A011794.

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+6) - (n^2 + 7*n + 16)/2); # G. C. Greubel, Sep 05 2019
  • Magma
    [Fibonacci(n+6) - (n^2 + 7*n + 16)/2: n in [0..40]]; // G. C. Greubel, Sep 05 2019
    
  • Maple
    with(combinat); seq(fibonacci(n+6)-(n^2+7*n+16)*(1/2), n = 0..40); # G. C. Greubel, Sep 05 2019
  • Mathematica
    Nest[Accumulate,Fibonacci[Range[0,30]],3] (* or *) LinearRecurrence[{4,-5,1,2,-1},{0,1,4,11,25},40] (* Harvey P. Dale, Aug 19 2017 *)
  • PARI
    a(n)=fibonacci(n+6)-n*(n+7)/2-8 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [fibonacci(n+6) - (n^2 + 7*n + 16)/2 for n in (0..40)] # G. C. Greubel, Sep 05 2019
    

Formula

a(n) = Sum_{k=0..n} A000045(n-k)*k*(k+1)/2. - Benoit Cloitre, Jan 06 2003
G.f.: x/((1-x)^3*(1-x-x^2)).
From Paul Barry, Oct 07 2004: (Start)
a(n-2) = Sum_{k=0..floor(n/2)} binomial(n-k, k+3).
a(n-2) = Sum_{k=0..n} binomial(k, n-k+3). (End)
Convolution of A000045 and A000217 (Fibonacci and triangular numbers). - Ross La Haye, Nov 08 2004
a(n) = Fibonacci(n+6) - (n^2 + 7*n + 16)/2.