cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014192 Palindromes in base 4 (written in base 10).

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 15, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63, 65, 85, 105, 125, 130, 150, 170, 190, 195, 215, 235, 255, 257, 273, 289, 305, 325, 341, 357, 373, 393, 409, 425, 441, 461, 477, 493, 509, 514, 530, 546, 562, 582, 598, 614, 630, 650, 666
Offset: 1

Views

Author

Keywords

Comments

Rajasekaran, Shallit, & Smith prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Magma
    [n: n in [0..800] | Intseq(n, 4) eq Reverse(Intseq(n, 4))]; // Vincenzo Librandi, Sep 09 2015
    
  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,4], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    pal4Q[n_]:=Module[{c=IntegerDigits[n,4]},c==Reverse[c]]; Select[Range[ 0,700],pal4Q] (* Harvey P. Dale, Jul 21 2020 *)
  • PARI
    ispal(n,b=4)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from gmpy2 import digits
    def A014192(n):
        if n == 1: return 0
        y = (x:=1<<(n.bit_length()-2&-2))<<2
        return (c:=n-x)*x+int(digits(c,4)[-2::-1]or'0',4) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 2.7857715... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

Extensions

More terms from Patrick De Geest