A014192 Palindromes in base 4 (written in base 10).
0, 1, 2, 3, 5, 10, 15, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63, 65, 85, 105, 125, 130, 150, 170, 190, 195, 215, 235, 255, 257, 273, 289, 305, 325, 341, 357, 373, 393, 409, 425, 441, 461, 477, 493, 509, 514, 530, 546, 562, 582, 598, 614, 630, 650, 666
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Aayush Rajasekaran, Jeffrey Shallit, and Tim Smith, Sums of palindromes: an approach via automata, arXiv:1706.10206 [cs.FL], 2017.
- Index entries for sequences that are an additive basis, order 3.
Crossrefs
Programs
-
Magma
[n: n in [0..800] | Intseq(n, 4) eq Reverse(Intseq(n, 4))]; // Vincenzo Librandi, Sep 09 2015
-
Mathematica
f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,4], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *) pal4Q[n_]:=Module[{c=IntegerDigits[n,4]},c==Reverse[c]]; Select[Range[ 0,700],pal4Q] (* Harvey P. Dale, Jul 21 2020 *)
-
PARI
ispal(n,b=4)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
-
Python
from gmpy2 import digits def A014192(n): if n == 1: return 0 y = (x:=1<<(n.bit_length()-2&-2))<<2 return (c:=n-x)*x+int(digits(c,4)[-2::-1]or'0',4) if n
Chai Wah Wu, Jun 14 2024
Formula
Sum_{n>=2} 1/a(n) = 2.7857715... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
Extensions
More terms from Patrick De Geest
Comments