cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014205 (1/12)*(n+5)*(n+1)*n^2.

Original entry on oeis.org

0, 1, 7, 24, 60, 125, 231, 392, 624, 945, 1375, 1936, 2652, 3549, 4655, 6000, 7616, 9537, 11799, 14440, 17500, 21021, 25047, 29624, 34800, 40625, 47151, 54432, 62524, 71485, 81375, 92256, 104192, 117249, 131495, 147000, 163836, 182077, 201799, 223080, 246000
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A084990. - Arkadiusz Wesolowski, Jan 25 2014

Crossrefs

Cf. A084990.

Programs

  • Magma
    [(1/12)*(n+5)*(n+1)*n^2: n in [0..50]]; // Vincenzo Librandi, Aug 11 2014
    
  • Maple
    seq(2*binomial(n+3, 4)-binomial(n+1, 2), n=0..32); # Zerinvary Lajos, May 02 2007
  • Mathematica
    Table[((n+5)(n+1)n^2)/12,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,7,24,60},50] (* Harvey P. Dale, Aug 10 2014 *)
    CoefficientList[Series[x (x^2 - 2 x - 1)/(x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 11 2014 *)
  • PARI
    a(n)=n^2*(n+1)*(n+5)/12 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = 2*C(n+3,4) - C(n+1,2). - Zerinvary Lajos, May 02 2007
G.f.: x*(x^2-2*x-1)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(0)=0, a(1)=1, a(2)=7, a(3)=24, a(4)=60, a(n)=5*a(n-1)-10*a(n-2)+ 10*a(n-3)- 5*a(n-4)+a(n-5). - Harvey P. Dale, Aug 10 2014