A014263 Numbers that contain even digits only.
0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 200, 202, 204, 206, 208, 220, 222, 224, 226, 228, 240, 242, 244, 246, 248, 260, 262, 264, 266, 268, 280, 282, 284, 286, 288, 400, 402, 404, 406, 408, 420, 422, 424
Offset: 1
Examples
a(1000) = 24888. a(10^4) = 60888. a(10^5) = 22288888. a(10^6) = 446888888.
References
- K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985; p. 19.
Links
Crossrefs
Programs
-
Haskell
a014263 n = a014263_list !! (n-1) a014263_list = filter (all (`elem` "02468") . show) [0,2..] -- Reinhard Zumkeller, Jul 05 2011
-
Magma
[n: n in [0..424] | Set(Intseq(n)) subset [0..8 by 2]]; // Bruno Berselli, Jul 19 2011
-
Maple
a:= proc(m) local L,i; L:= convert(m-1,base,5); 2*add(L[i]*10^(i-1),i=1..nops(L)) end proc: seq(a(i),i=1..100); # Robert Israel, Apr 07 2016
-
Mathematica
Select[Range[450], And@@EvenQ[IntegerDigits[#]]&] (* Harvey P. Dale, Jan 30 2011 *) FromDigits/@Tuples[{0,2,4,6,8},3] (* Harvey P. Dale, Jul 07 2025 *)
-
PARI
a(n) = 2*fromdigits(digits(n-1, 5), 10); \\ Michel Marcus, Nov 04 2022
-
PARI
is(n)=#setminus(Set(digits(n)), [0,2,4,6,8])==0 \\ Charles R Greathouse IV, Mar 03 2025
-
Python
from sympy.ntheory.digits import digits def a(n): return int(''.join(str(2*d) for d in digits(n, 5)[1:])) print([a(n) for n in range(58)]) # Michael S. Branicky, Jan 13 2022
-
Python
from itertools import count, islice, product def agen(): # generator of terms yield 0 for d in count(1): for first in "2468": for rest in product("02468", repeat=d-1): yield int(first + "".join(rest)) print(list(islice(agen(), 58))) # Michael S. Branicky, Jan 13 2022
Formula
A045888(a(n)) = 0. - Reinhard Zumkeller, Aug 25 2009
a(n) = A179082(n) for n <= 25. - Reinhard Zumkeller, Jun 28 2010
From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = ((2*b_m(n)) mod 8 + 2)*10^m + Sum_{j=0..m-1} ((2*b_j(n)) mod 10)*10^j, where n>1, b_j(n) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 2*10^n.
a(2*5^n+1) = 4*10^n.
a(3*5^n+1) = 6*10^n.
a(4*5^n+1) = 8*10^n.
a(n) = 2*10^log_5(n-1) for n=5^k+1,
a(n) < 2*10^log_5(n-1), else.
a(n) > (8/9)*10^log_5(n-1) n>1.
G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^5^j *(1-x^5^j)* (2+4x^5^j+ 6(x^2)^5^j+ 8(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = 2*(x/(1-x))*Sum_{j>=0} 10^j*x^5^j * (1-4x^(3*5^j)+3x^(4*5^j))/((1-x^5^j)(1-x^5^(j+1))).
Also: g(x) = 2*(x/(1-x))*(h_(5,1)(x) + h_(5,2)(x) + h_(5,3)(x) + h_(5,4)(x) - 4*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)
a(5*n+i-4) = 10*a(n) + 2*i for n >= 1, i=0..4. - Robert Israel, Apr 07 2016
Sum_{n>=2} 1/a(n) = A194182. - Bernard Schott, Jan 13 2022
Extensions
Examples and crossrefs added by Hieronymus Fischer, Jun 06 2012
Comments