cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014322 Convolution of Bell numbers with themselves.

Original entry on oeis.org

1, 2, 5, 14, 44, 154, 595, 2518, 11591, 57672, 308368, 1762500, 10716321, 69011130, 468856113, 3348695194, 25064539520, 196052415230, 1598543907843, 13556379105766, 119332020447219, 1088376385244908, 10268343703117892, 100063762955374568, 1005822726810785809
Offset: 0

Views

Author

Keywords

Comments

Equals row sums of triangle A144155. - Gary W. Adamson, Sep 12 2008

Crossrefs

Column k=2 of A292870.

Programs

  • Magma
    A014322:= func< n | (&+[Bell(j)*Bell(n-j): j in [0..n]]) >;
    [A014322(n): n in [0..40]]; // G. C. Greubel, Jan 08 2023
    
  • Maple
    with(combinat):
    a:= n-> add(bell(i)*bell(n-i), i=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 13 2014
  • Mathematica
    a[n_]:= Sum[BellB[k]*BellB[n-k], {k,0,n}];
    Table[a[n], {n,0,30}] (* Jean-François Alcover, Jan 17 2016 *)
  • SageMath
    def A014322(n): return sum(bell_number(j)*bell_number(n-j) for j in range(n+1))
    [A014322(n) for n in range(41)] # G. C. Greubel, Jan 08 2023

Formula

G.f.: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^2, a continued fraction. - Ilya Gutkovskiy, Sep 25 2017
G.f.: ( Sum_{j>=0} A000110(j)*x^j )^2. - G. C. Greubel, Jan 08 2023