A014330 Exponential convolution of Catalan numbers with themselves.
1, 2, 6, 22, 92, 424, 2108, 11134, 61748, 356296, 2123720, 13002840, 81417520, 519550880, 3369559864, 22161337742, 147544048324, 992923683912, 6746101933304, 46226667046360, 319199694771696, 2219445498261152, 15529758665102416, 109291258152550712
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
A014330:= func< n | (&+[Binomial(n,k)*Catalan(k)*Catalan(n-k): k in [0..n]]) >; [A014330(n): n in [0..40]]; // G. C. Greubel, Jan 06 2023
-
Mathematica
Table[Sum[Binomial[n, k]*Binomial[2*k, k]/(k+1)*Binomial[2*n-2*k, n-k]/(n-k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Feb 25 2014 *)
-
PARI
A014330(n)=sum(k=0,n,binomial(n,k)*A000108(k)*A000108(n-k)) \\ M. F. Hasler, Jan 13 2012
-
SageMath
def c(n): return catalan_number(n) def A014330(n): return sum( binomial(n,k)*c(k)*c(n-k) for k in range(n+1)) [A014330(n) for n in range(41)] # G. C. Greubel, Jan 06 2023
Formula
From Vladeta Jovovic, Jan 01 2004: (Start)
E.g.f.: exp(4*x)*(BesselI(0, 2*x) - BesselI(1, 2*x))^2.
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k, k)/(k+1)*binomial(2*n-2*k, n-k)/(n-k+1).
a(n) = 4^n*Sum_{k=0..n} (-4)^(-k)*binomial(n, k)*binomial(k, floor(k/2))*binomial(k+1, floor((k+1)/2)).
a(n) = binomial(2*n, n)/(n+1)*hypergeometric3F2([-n-1, -n, 1/2], [2, 1/2-n], -1). (End)
(n + 1)*(n + 2)*a(n) = 4*(3*n^2 + n - 1)*a(n - 1) - 32*(n - 1)^2*a(n - 2). - Vladeta Jovovic, Jul 15 2004
G.f.: (1-6*x)*hypergeometric2F1([1/2, 1/2],[2],16*x^2/(4*x-1)^2)/(2*x*(4*x-1)) - x*(8*x-1)*hypergeometric2F1([3/2, 3/2],[3],16*x^2/(4*x-1)^2)/(4*x-1)^3 + 1/(2*x). - Mark van Hoeij, Oct 25 2011
E.g.f.: hypergeometric1F1([1/2],[2],4*x)^2, coinciding with the above given e.g.f. - Wolfdieter Lang, Jan 13 2012
a(n) ~ 8^(n+1) / (Pi*n^3). - Vaclav Kotesovec, Feb 25 2014
Extensions
More terms from Vincenzo Librandi, Feb 27 2014