A014402 Numbers found in denominators of expansion of Airy function Ai(x).
1, 1, 6, 12, 180, 504, 12960, 45360, 1710720, 7076160, 359251200, 1698278400, 109930867200, 580811212800, 46170964224000, 268334780313600, 25486372251648000, 161000868188160000, 17891433320656896000, 121716656350248960000, 15565546988971499520000, 113196490405731532800000
Offset: 0
Keywords
Examples
Mathematica gives the series as 1/(3^(2/3)*Gamma(2/3)) - x/(3^(1/3)*Gamma(1/3)) + x^3/(6*3^(2/3)*Gamma(2/3)) - x^4/(12*3^(1/3)*Gamma(1/3)) + x^6/(180*3^(2/3)*Gamma(2/3)) - x^7/(504*3^(1/3)*Gamma(1/3)) + x^9/(12960*3^(2/3)*Gamma(2/3)) - ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..420
- NIST's Digital Library of Mathematical Functions, Airy and Related Functions (Maclaurin Series) by Frank W. J. Olver.
Programs
-
Magma
A014402:= func< n | n eq 0 select 1 else (&*[n-j+Floor(n/2)-Floor(j/2): j in [0..n-1]]) >; [A014402(n): n in [0..25]]; // G. C. Greubel, Sep 20 2023
-
Mathematica
Series[ AiryAi[ x ], {x, 0, 30} ] a[ n_] := If[ n<0, 0, (n + Quotient[ n, 2])! / Product[ 3 k + 1 + Mod[n, 2], {k, 0, Quotient[ n, 2] - 1}]]; (* Michael Somos, Oct 14 2011 *) (* Next, A014402 generated in via Vandermonde determinants based on A007494 *) f[j_]:= j + Floor[(j+1)/2]; z = 20; v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] d[n_]:= Product[(i-1)!, {i,n}] Table[v[n], {n,z}] (* A203433 *) Table[v[n+1]/v[n], {n,z}] (* this sequence *) Table[v[n]/d[n], {n,z}] (* A203434 *) (* Clark Kimberling, Jan 02 2012 *)
-
PARI
{a(n) = if( n<0, 0, (n\2 + n)! / prod( k=0, n\2 -1, n%2 + 3*k + 1))}; /* Michael Somos, Oct 14 2011 */
-
SageMath
def A014402(n): return product(n-j+(n//2)-(j//2) for j in range(n)) [A014402(n) for n in range(31)] # G. C. Greubel, Sep 20 2023
Comments