A014413 Triangular array formed from elements to right of middle of Pascal's triangle.
1, 1, 3, 1, 4, 1, 10, 5, 1, 15, 6, 1, 35, 21, 7, 1, 56, 28, 8, 1, 126, 84, 36, 9, 1, 210, 120, 45, 10, 1, 462, 330, 165, 55, 11, 1, 792, 495, 220, 66, 12, 1, 1716, 1287, 715, 286, 78, 13, 1, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1
Offset: 1
Examples
Triangle begins as: 1; 1; 3, 1; 4, 1; 10, 5, 1; 15, 6, 1; 35, 21, 7, 1; 56, 28, 8, 1; 126, 84, 36, 9, 1; 210, 120, 45, 10, 1; 462, 330, 165, 55, 11, 1; 792, 495, 220, 66, 12, 1; ...
Links
- Reinhard Zumkeller, Rows n = 1..200 of triangle, flattened
Programs
-
Haskell
a014413 n k = a014413_tabf !! (n-1) !! (k-1) a014413_row n = a014413_tabf !! (n-1) a014413_tabf = [1] : f 1 [1] where f 0 us'@(_:us) = ys : f 1 ys where ys = zipWith (+) us' (us ++ [0]) f 1 vs@(v:_) = ys' : f 0 ys where ys@(_:ys') = zipWith (+) (vs ++ [0]) ([v] ++ vs) -- Reinhard Zumkeller, Dec 24 2015
-
Mathematica
Table[Binomial[n,k],{n,15},{k,Ceiling[(n+1)/2],n}]//Flatten (* Stefano Spezia, Jan 16 2025 *)
Extensions
More terms from James Sellers