cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110841 a(n) is the number of prime factors, with multiplicity, of abs(A014509(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 7, 7, 2, 2, 4, 3, 3, 7, 1, 6, 4, 5, 14, 4, 9, 5, 10, 3, 11, 2, 5, 3, 7, 11, 5, 3, 4, 15, 6, 5, 19, 10, 6, 13, 15, 5, 10, 5, 5, 6, 7, 5, 15, 7, 5, 2, 13, 4, 3, 10, 5, 9, 7, 5, 4, 9, 5, 4, 1, 7, 4, 4, 5, 3, 11, 13, 10, 5, 5, 7, 6
Offset: 0

Views

Author

Jonathan Vos Post, Sep 16 2005

Keywords

Examples

			a(10) = 2 because A014509(10) = 529 = 23^2.
a(8) = a(19) = 1 since A014509(8) and A014509(19) are prime.
		

Crossrefs

Programs

  • PARI
    a(n) = my(b=bernfrac(2*n), c=floor(abs(b))*sign(b)); if (c==0, 0, bigomega(c)); \\ Michel Marcus, Mar 29 2020

Formula

a(n) = A001222(abs(A014509(n))).

Extensions

More terms from Michel Marcus, Mar 29 2020
a(51)-a(65) from Jinyuan Wang, Apr 02 2020
More terms from Sean A. Irvine, Jul 29 2024

A134825 Floor of the even-indexed Bernoulli numbers B_{2n} = A000367(n)/A002445(n).

Original entry on oeis.org

1, 0, -1, 0, -1, 0, -1, 1, -8, 54, -530, 6192, -86581, 1425517, -27298232, 601580873, -15116315768, 429614643061, -13711655205089, 488332318973593, -19296579341940069, 841693047573682615, -40338071854059455414, 2115074863808199160560, -120866265222965259346028
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Examples

			n=4: B_8=-1/30=-0,033... hence a(4)=-1.
		

References

  • C. J. Moreno and S. S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall, 2006, p. 107.

Crossrefs

Programs

  • Mathematica
    Floor@BernoulliB[2 Range[0, 20]] (* Vladimir Reshetnikov, Nov 12 2015 *)
  • PARI
    vector(30, n, n--; floor(bernfrac(2*n))) \\ Altug Alkan, Nov 12 2015

Formula

a(n) = floor(B_(2n)), n>=0, with B_{2n} = A000367(n)/A002445(n) = A027641(2n)/A027642(2n).
Showing 1-2 of 2 results.