cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014578 Binary expansion of Thue constant (or Roth's constant).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0

Views

Author

Keywords

Comments

a(0)=0; to construct the sequence start with a(1)=1, then concatenate twice and change the last term 1->0 giving 1,1,0. Concatenate those 3 terms twice giving 1,1,0,1,1,0,1,1,0, change the last term 0->1 giving 1,1,0,1,1,0,1,1,1. Concatenate those 9 terms twice and change the last term 1->0, etc. - Benoit Cloitre, Feb 09 2003
It is probably my fault if this constant is misattributed. It was "computed" circa 1971 by a very simple Life pattern (as a diagonal row of blinkers), an obvious case of the (Thue-Siegel-)Roth criterion for transcendence, since the error after 3^n bits is ~2^-3^(n+1) = O(denominator^-3). I probably should have called it Roth's constant. - Bill Gosper, Mar 19 2004
a(0) = 0; then fixed point of the morphism 1->110, 0->111, starting with a(1) = 1. - Philippe Deléham, Mar 21 2004
Characteristic function of A007417, i.e., a(n) = 1 if n is in A007417 and a(n) = 0 otherwise. - Philippe Deléham, Mar 21 2004
Multiplicative with a(3^e) = (e+1)%2, a(p^e) = 1 otherwise. - David W. Wilson, Jun 10 2005
a(A145204(n)) = 0, a(A007417(n)) = 1. - Reinhard Zumkeller, Oct 04 2008
1 if the ternary representation of n has an even number of trailing zeros. - Ralf Stephan, Sep 02 2013

Examples

			Start: 1
Rules:
  1 --> 110
  0 --> 111
-------------
0:   (#=1)
  1
1:   (#=3)
  110
2:   (#=9)
  110110111
3:   (#=27)
  110110111110110111110110110
4:   (#=81)
  110110111110110111110110110110110111110110111110110110110110111110110111110110111
- _Joerg Arndt_, Jul 06 2011
		

Crossrefs

Cf. Thue-Morse or parity constant A010060.
Cf. A154271.

Programs

  • Mathematica
    Nest[ Flatten[ # /. {0 -> {1, 1, 1}, 1 -> {1, 1, 0}}] &, {0}, 6] (* Robert G. Wilson v, Mar 09 2005 *)
  • PARI
    a(n)=if(n<1,0,sum(k=0,ceil(log(n)/log(3)),(-1)^k*(floor(n/3^k)-floor((n-1)/3^k))));
    
  • PARI
    A014578(n) = if(!n,n,valuation(n, 3)%2==0); \\ Ralf Stephan, Sep 02 2013, edited for the term a(0)=0 - Antti Karttunen, May 28 2024
    
  • Python
    from sympy import multiplicity
    def A014578(n): return multiplicity(3,n)&1^1 if n else 0 # Chai Wah Wu, Jan 28 2025

Formula

a(0)=0; for n>=1, a(n)=sum(k>=0, (-1)^k*(floor(n/3^k)-floor((n-1)/3^k))). - Benoit Cloitre, Jun 03 2003
a(0)=0, a(3k)=1-a(k); a(3k+1)=a(3k+2)=1. - Benoit Cloitre, Mar 19 2004
Sum_{k=0..3^n} a(k) = A015518(n+1) = (-1)^n*A014983(n+1). - Philippe Deléham, Mar 31 2004
a(n) = 1 - A007949(n) mod 2 for n>0. - Reinhard Zumkeller, Oct 04 2008
Let T(x) be the g.f., then T(x) + T(x^3) = x/(1-x). - Joerg Arndt, May 11 2010
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/4. - Amiram Eldar, Jul 13 2020