cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014614 Numbers that are products of 5 primes (or 5-almost primes, a generalization of semiprimes).

Original entry on oeis.org

32, 48, 72, 80, 108, 112, 120, 162, 168, 176, 180, 200, 208, 243, 252, 264, 270, 272, 280, 300, 304, 312, 368, 378, 392, 396, 405, 408, 420, 440, 450, 456, 464, 468, 496, 500, 520, 552, 567, 588, 592, 594, 612, 616, 630, 656, 660, 675, 680, 684, 688, 696
Offset: 1

Views

Author

Keywords

Comments

Divisible by exactly 5 prime powers (not including 1).

Crossrefs

Cf. A046304, A114453 (number of 5-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), this sequence (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[300], Plus @@ Last /@ FactorInteger[ # ] == 5 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
  • PARI
    is(n)=bigomega(n)==5 \\ Charles R Greathouse IV, Mar 20 2013
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A014614(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m*r*s))-d for a,k in enumerate(primerange(integer_nthroot(x,5)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(x//k,4)[0]+1),a) for c,r in enumerate(primerange(m,integer_nthroot(x//(k*m),3)[0]+1),b) for d,s in enumerate(primerange(r,isqrt(x//(k*m*r))+1),c)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 17 2024

Formula

Product p_i^e_i with sum e_i = 5.
a(n) ~ 24n log n/(log log n)^4. - Charles R Greathouse IV, Mar 20 2013
a(n) = A078840(5,n). - R. J. Mathar, Jan 30 2019

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu) and Patrick De Geest, Jun 15 1998