A014614 Numbers that are products of 5 primes (or 5-almost primes, a generalization of semiprimes).
32, 48, 72, 80, 108, 112, 120, 162, 168, 176, 180, 200, 208, 243, 252, 264, 270, 272, 280, 300, 304, 312, 368, 378, 392, 396, 405, 408, 420, 440, 450, 456, 464, 468, 496, 500, 520, 552, 567, 588, 592, 594, 612, 616, 630, 656, 660, 675, 680, 684, 688, 696
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Almost Prime
Crossrefs
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), this sequence (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Programs
-
Mathematica
Select[Range[300], Plus @@ Last /@ FactorInteger[ # ] == 5 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
-
PARI
is(n)=bigomega(n)==5 \\ Charles R Greathouse IV, Mar 20 2013
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A014614(n): def f(x): return int(n+x-sum(primepi(x//(k*m*r*s))-d for a,k in enumerate(primerange(integer_nthroot(x,5)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(x//k,4)[0]+1),a) for c,r in enumerate(primerange(m,integer_nthroot(x//(k*m),3)[0]+1),b) for d,s in enumerate(primerange(r,isqrt(x//(k*m*r))+1),c))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 17 2024
Formula
Product p_i^e_i with sum e_i = 5.
a(n) ~ 24n log n/(log log n)^4. - Charles R Greathouse IV, Mar 20 2013
a(n) = A078840(5,n). - R. J. Mathar, Jan 30 2019
Extensions
More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu) and Patrick De Geest, Jun 15 1998
Comments