cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A287145 Smallest k such that both of the consecutive Woodall numbers A003261(k) and A003261(k+1) are divisible by A014662(n), the n-th prime p with even order of 2 mod p.

Original entry on oeis.org

4, 13, 64, 89, 83, 188, 433, 701, 449, 342, 1429, 1768, 1889, 2276, 3484, 2423, 5149, 5776, 2069, 1693, 8644, 4793, 9728, 11173, 4237, 13364, 15049, 16108, 16469, 9455, 19501, 22364, 25876, 8929, 3131, 6524, 2311, 36313, 13017, 10114, 13582, 43069, 15962
Offset: 1

Views

Author

Amiram Eldar, May 20 2017

Keywords

Comments

Keller proved that the occurrence of 2 consecutive Woodall numbers that are divisible by the same prime is restricted to primes p with even h(p), the order of 2 mod p, and that there are an infinity of such pairs.

Examples

			11 is the 3rd prime p with even order of 2 mod p. A003261(k)=k*2^k-1 is divisible by 11 for k = 16,48,61,64,65,73,79,100,... The first occurrence of 2 consecutive numbers is 64 and 65, thus a(3) = 64.
		

Crossrefs

Programs

  • Mathematica
    a = {}; For[p=0, p<=11699, p++; If[!PrimeQ[p], Continue[]]; h=MultiplicativeOrder[2, p]; If[!EvenQ[h], Continue[]]; n=(h/2+1)*p-2; a = AppendTo[a, n]]; a

Formula

a(n) = (h(p)/2 + 1)*p - 2, where p=A014662(n), and h(p) is the order of 2 modulo p (A014664).

A059349 Primes p such that x^32 = 2 has no solution mod p.

Original entry on oeis.org

3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 83, 97, 101, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 331, 347, 349, 353, 373, 379, 389, 397, 401, 409, 419
Offset: 1

Views

Author

Klaus Brockhaus, Jan 27 2001

Keywords

Comments

Complement of A049564 relative to A000040.
Differs from A014662 first at p=6529, then at p=21569. [R. J. Mathar, Oct 05 2008]
Differs from A045316 (x^8 == 2 (mod p) has no solution) first at a(37) = 257 which is not a term of A045316. See A070184 for all such terms. - M. F. Hasler, Jun 21 2024

Crossrefs

Cf. A070184 = (this sequence) \ A045316.

Programs

  • Magma
    [p: p in PrimesUpTo(450) | not exists{x : x in ResidueClassRing(p) | x^32 eq 2 }]; // Vincenzo Librandi, Sep 20 2012
  • Mathematica
    ok[p_] := Reduce[Mod[x^32 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[100]], ok ] (* Vincenzo Librandi, Sep 20 2012  *)

A091317 Primes p that divide 2^n+1 for some n.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 83, 97, 101, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 331, 347, 349, 353, 373, 379, 389, 397, 401, 409, 419, 421, 433
Offset: 1

Views

Author

N. J. A. Sloane, Feb 21 2004

Keywords

Comments

From Charles R Greathouse IV, Feb 13 2009: (Start)
Essentially the same as A014662.
Also primes p for which p^2 divides 2^n+1 for some n. If p | 2^g + 1, then 2^g = kp - 1 for some k, so 2^gp = (kp - 1)^p = (-1)^p + (-1)^(p-1) * kp * (p choose 1) + ... and so 2^gp = -1 (mod p^2). (End)

Crossrefs

Complement in primes of A014663.
Cf. A014662. - Charles R Greathouse IV, Feb 13 2009

Programs

  • Maple
    2, op(select(t -> isprime(t) and numtheory:-order(2,t)::even, [seq(2*i+1, i=1..1000)])); # Robert Israel, Aug 12 2015
  • Mathematica
    Join[{2}, Select[Prime[Range[100]], EvenQ[MultiplicativeOrder[2, #/ (2^IntegerExponent[#, 2])]]&]] (* Jean-François Alcover, Sep 02 2018 *)
  • PARI
    isA091317(p)=!bitand(znorder(Mod(2,p)),1) \\ Charles R Greathouse IV, Feb 13 2009

Formula

Has density 17/24 (Hasse 1966).

A296243 Numbers k such that the multiplicative order of 2 modulo k is even.

Original entry on oeis.org

3, 5, 9, 11, 13, 15, 17, 19, 21, 25, 27, 29, 33, 35, 37, 39, 41, 43, 45, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 75, 77, 81, 83, 85, 87, 91, 93, 95, 97, 99, 101, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 153
Offset: 1

Views

Author

Max Alekseyev, Dec 09 2017

Keywords

Comments

Odd numbers k such that A007733(k) = A002326((k-1)/2) is even.

Crossrefs

Set difference of A005408 and A036259.
Contains A296244 as a subsequence.
The prime terms are given by A014662.

Programs

  • Mathematica
    A036259 = Select[Range[1, 199, 2], OddQ[MultiplicativeOrder[2, #]] &];
    Range[1, A036259[[-1]], 2] ~Complement~ A036259 (* Jean-François Alcover, Dec 20 2017 *)
    Select[Range[1, 153, 2], EvenQ[MultiplicativeOrder[2, #]] &] (* Amiram Eldar, Jul 30 2020 *)
  • PARI
    { is_A296243(n) = (n%2) && !(znorder(Mod(2,n))%2); }

A213049 Primes p such that the order of 2 mod p is a square.

Original entry on oeis.org

5, 37, 73, 101, 109, 197, 257, 577, 601, 641, 677, 727, 1601, 1801, 2593, 3137, 3389, 3457, 4057, 4357, 5477, 8101, 8837, 10369, 14401, 14407, 16901, 17957, 18253, 18433, 20809, 21317, 22501, 25601, 30977, 33857, 37447, 42437, 44101, 47629, 47653, 50177
Offset: 1

Views

Author

Joerg Arndt, Jun 03 2012

Keywords

Examples

			The order of 2 mod 601 is 25, which is a square, so 601 is a term.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [2..6275] | IsSquare(Modorder(2, NthPrime(n)))]; // Bruno Berselli, Jun 08 2012
  • PARI
    { forprime (p=3, 10^6,
        r = znorder(Mod(2,p));
        if ( issquare(r), print1(p,", ") );
    ); }
    

A308732 Primes p such that the smallest possible number of 1's in binary representation of a multiple of p equals 3.

Original entry on oeis.org

7, 23, 47, 71, 73, 79, 103, 151, 167, 191, 199, 239, 263, 271, 311, 337, 359, 367, 383, 439, 463, 479, 487, 503, 599, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 887, 919, 937, 967, 983, 991, 1031, 1039, 1063, 1087, 1151, 1223, 1231, 1279, 1289, 1303
Offset: 1

Views

Author

Jeffrey Shallit, Jun 20 2019

Keywords

Comments

The first few corresponding multipliers that give three 1's are (for the numbers listed above) are 1, 3, 11, 119, 1, 13, 5, 7, 791, 87839, 247, 17970575, 3987, 8048111, 7, 49, 23, 2995944847, 5607007, 7, 2319663.

Crossrefs

Cf. A014662, which enumerates the same sequence for two 1's instead of three.

Programs

  • Maple
    filter:= proc(n) local S, r, j;
      if not isprime(n) then return false fi;
      r:= numtheory:-order(2,n);
      if r::even then return false fi;
      S:= {seq(2 &^ j mod n, j=1..r)};
      S intersect map(t -> -t-1 mod n, S) <> {}
    end proc:
    select(filter, [seq(i,i=3..2000, 2)]); # Robert Israel, Jun 23 2019
Showing 1-6 of 6 results.