cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014717 a(n) = (F(n+1) + L(n))^2 where F(n) are the Fibonacci numbers (A000045) and L(n) are the Lucas numbers (A000032).

Original entry on oeis.org

9, 4, 25, 49, 144, 361, 961, 2500, 6561, 17161, 44944, 117649, 308025, 806404, 2111209, 5527201, 14470416, 37884025, 99181681, 259660996, 679801329, 1779742969, 4659427600, 12198539809, 31936191849, 83610035716, 218893915321, 573071710225, 1500321215376
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(Fibonacci(n+1) + Lucas(n))^2: n in [0..30]]; // Vincenzo Librandi, Apr 25 2015
  • Mathematica
    Table[(Fibonacci[n+1] + LucasL[n])^2, {n, 0, 30}] (* Michael De Vlieger, Apr 24 2015 *)
  • PARI
    lucas(n) = if(n==0, 2, fibonacci(2*n)/fibonacci(n))
    a(n) = (fibonacci(n+1)+lucas(n))^2 \\ Colin Barker, Apr 24 2015
    
  • PARI
    Vec( (9-14*x-x^2)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Apr 23 2015
    
  • PARI
    a(n) = (2*fibonacci(n+1)+fibonacci(n-1))^2
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). - Colin Barker, Apr 23 2015
G.f.: (9 - 14*x - x^2)/ ((1+x)*(1-3*x+x^2)). - Colin Barker, Apr 23 2015
a(n) = A013655(n)^2. - Hartmut F. W. Hoft, Apr 24 2015
a(n) = (1/5)*(22*(-1)^n + 19*Fibonacci(2*n) + 23*Fibonacci(2*n-1)). - Ehren Metcalfe, Mar 26 2016
a(n) = (2^(-1-n)*(11*(-1)^n*2^(2+n) + (23-3*sqrt(5))*(3-sqrt(5))^n + (3+sqrt(5))^n*(23+3*sqrt(5))))/5. - Colin Barker, Oct 01 2016
a(n) = 3*a(n-1) - a(n-2) + 22*(-1)^n. - Greg Dresden, May 18 2020

Extensions

Name corrected by Colin Barker, Apr 24 2015