A014717 a(n) = (F(n+1) + L(n))^2 where F(n) are the Fibonacci numbers (A000045) and L(n) are the Lucas numbers (A000032).
9, 4, 25, 49, 144, 361, 961, 2500, 6561, 17161, 44944, 117649, 308025, 806404, 2111209, 5527201, 14470416, 37884025, 99181681, 259660996, 679801329, 1779742969, 4659427600, 12198539809, 31936191849, 83610035716, 218893915321, 573071710225, 1500321215376
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
Magma
[(Fibonacci(n+1) + Lucas(n))^2: n in [0..30]]; // Vincenzo Librandi, Apr 25 2015
-
Mathematica
Table[(Fibonacci[n+1] + LucasL[n])^2, {n, 0, 30}] (* Michael De Vlieger, Apr 24 2015 *)
-
PARI
lucas(n) = if(n==0, 2, fibonacci(2*n)/fibonacci(n)) a(n) = (fibonacci(n+1)+lucas(n))^2 \\ Colin Barker, Apr 24 2015
-
PARI
Vec( (9-14*x-x^2)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Apr 23 2015
-
PARI
a(n) = (2*fibonacci(n+1)+fibonacci(n-1))^2
Formula
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). - Colin Barker, Apr 23 2015
G.f.: (9 - 14*x - x^2)/ ((1+x)*(1-3*x+x^2)). - Colin Barker, Apr 23 2015
a(n) = A013655(n)^2. - Hartmut F. W. Hoft, Apr 24 2015
a(n) = (1/5)*(22*(-1)^n + 19*Fibonacci(2*n) + 23*Fibonacci(2*n-1)). - Ehren Metcalfe, Mar 26 2016
a(n) = (2^(-1-n)*(11*(-1)^n*2^(2+n) + (23-3*sqrt(5))*(3-sqrt(5))^n + (3+sqrt(5))^n*(23+3*sqrt(5))))/5. - Colin Barker, Oct 01 2016
a(n) = 3*a(n-1) - a(n-2) + 22*(-1)^n. - Greg Dresden, May 18 2020
Extensions
Name corrected by Colin Barker, Apr 24 2015