cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014771 Squares of odd hexagonal numbers.

Original entry on oeis.org

1, 225, 2025, 8281, 23409, 53361, 105625, 189225, 314721, 494209, 741321, 1071225, 1500625, 2047761, 2732409, 3575881, 4601025, 5832225, 7295401, 9018009, 11029041, 13359025, 16040025, 19105641, 22591009, 26532801, 30969225, 35940025, 41486481, 47651409
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A003215, (hex numbers), A014634 (odd hex numbers), A006752.

Programs

  • Magma
    [(2*n-1)^2*(4*n-3)^2 : n in [1..50]]; // Wesley Ivan Hurt, Jul 31 2016
  • Maple
    A014771:=n->(2*n-1)^2*(4*n-3)^2: seq(A014771(n), n=1..50); # Wesley Ivan Hurt, Jul 31 2016
  • Mathematica
    (Select[Table[n(2n-1), {n,60}], OddQ])^2 (* or *) LinearRecurrence[ {5,-10,10,-5,1}, {1,225,2025,8281,23409}, 30] (* Harvey P. Dale, Jun 23 2011 *)

Formula

G.f.: x*(1+220*x+910*x^2+396*x^3+9*x^4)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5. - Harvey P. Dale, Jun 23 2011
a(n) = (2*n-1)^2*(4*n-3)^2. - Wesley Ivan Hurt, Jul 31 2016
Sum_{n>=1} 1/a(n) = 2*G + 3*Pi^2/8 - Pi - 2*log(2), where G is Catalan's constant (A006752). - Amiram Eldar, Feb 27 2022

Extensions

More terms from Erich Friedman