cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014820 a(n) = (1/3)*(n^2 + 2*n + 3)*(n+1)^2.

Original entry on oeis.org

1, 8, 33, 96, 225, 456, 833, 1408, 2241, 3400, 4961, 7008, 9633, 12936, 17025, 22016, 28033, 35208, 43681, 53600, 65121, 78408, 93633, 110976, 130625, 152776, 177633, 205408, 236321, 270600, 308481
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of 4 X 4 pandiagonal magic squares with sum 2n. - Sharon Sela (sharonsela(AT)hotmail.com), May 10 2002
Figurate numbers based on the 4-dimensional regular convex polytope called the 16-cell, hexadecachoron, 4-cross polytope or 4-hyperoctahedron with Schlaefli symbol {3,3,4}. a(n)=(n^2*(n^2+2))/3 if the offset were 1. - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004, R. J. Mathar, Jul 18 2009
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 7-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Equals binomial transform of [1, 7, 18, 20, 8, 0, 0, 0, ...], where (1, 7, 18, 20, 8) = row 4 of the Chebyshev triangle A081277. Also = row 4 of the array in A142978. - Gary W. Adamson, Jul 19 2008

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Programs

  • GAP
    List([0..40], n -> (n+1)^2*((n+1)^2 +2)/3); # G. C. Greubel, Feb 10 2019
  • Magma
    [(1/3)*(n^2+2*n+3)*(n+1)^2: n in [0..40]]; // Vincenzo Librandi, May 22 2011
    
  • Maple
    al:=proc(s,n) binomial(n+s-1,s); end; be:=proc(d,n) local r; add( (-1)^r*binomial(d-1,r)*2^(d-1-r)*al(d-r,n),r=0..d-1); end; [seq(be(4,n),n=0..100)];
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 33, 96, 225}, 31] (* Jean-François Alcover, Jan 17 2018 *)
  • PARI
    a(n)=(n+1)^2*(n^2+2*n+3)/3 \\ Charles R Greathouse IV, Apr 17 2012
    
  • R
    a <- c(1, 8, 33, 96,225)
    for(n in (length(a)+1):30) a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5]
    a # Yosu Yurramendi, Sep 03 2013
    
  • Sage
    [((n+1)^2+2)*(n+1)^2/3 for n in range(40)] # G. C. Greubel, Feb 10 2019
    

Formula

Or, a(n-1) = n^2*(n^2+2)/3. - Corrected by R. J. Mathar, Jul 18 2009
From Vladeta Jovovic, Apr 03 2002: (Start)
G.f.: (1+x)^3/(1-x)^5.
Recurrence: a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
a(n-1) = C(n+3,4) + 3 C(n+2,4) + 3 C(n+1,4) + C(n,4).
Sum_{n>=0} 1/((1/3*(n^2 + 2*n + 3))*(n+1)^2) = (1/4)*Pi^2 - 3*sqrt(2)*Pi*coth(Pi*sqrt(2))*(1/8) + 3/8 = 1.1758589... - Stephen Crowley, Jul 14 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n > 4, a(0)=1, a(1)=8, a(2)=33, a(3)=96, a(4)=225. - Yosu Yurramendi, Sep 03 2013
From Bruce J. Nicholson, Jan 23 2019: (Start)
Sum_{i=0..n} a(i) = A061927(n+1).
a(n) = 4*A002415(n+1) + A000290(n+1) = A039623(n+1) + A002415(n+1). (End)
E.g.f.: (3 + 21*x + 27*x^2 + 10*x^3 + x^4)*exp(x)/3. - G. C. Greubel, Feb 10 2019
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 17/3 - 8*log(2) = 1/(8 + 2/(8 + 6/(8 + ... + n*(n-1)/(8 + ...)))). See A142983. - Peter Bala, Mar 06 2024

Extensions

Formula index corrected by R. J. Mathar, Jul 18 2009