A014820 a(n) = (1/3)*(n^2 + 2*n + 3)*(n+1)^2.
1, 8, 33, 96, 225, 456, 833, 1408, 2241, 3400, 4961, 7008, 9633, 12936, 17025, 22016, 28033, 35208, 43681, 53600, 65121, 78408, 93633, 110976, 130625, 152776, 177633, 205408, 236321, 270600, 308481
Offset: 0
References
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Ahmed, J. De Loera and R. Hemmecke, Polyhedral Cones of Magic Cubes and Squares, arXiv:math/0201108 [math.CO], 2002.
- Maya Ahmed, Jesús De Loera and Raymond Hemmecke, Polyhedral cones of magic cubes and squares, in Discrete and Computational Geometry, Springer, Berlin, 2003, pp. 25-41.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Eric Weisstein's World of Mathematics, 16-Cell
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1)
Crossrefs
Programs
-
GAP
List([0..40], n -> (n+1)^2*((n+1)^2 +2)/3); # G. C. Greubel, Feb 10 2019
-
Magma
[(1/3)*(n^2+2*n+3)*(n+1)^2: n in [0..40]]; // Vincenzo Librandi, May 22 2011
-
Maple
al:=proc(s,n) binomial(n+s-1,s); end; be:=proc(d,n) local r; add( (-1)^r*binomial(d-1,r)*2^(d-1-r)*al(d-r,n),r=0..d-1); end; [seq(be(4,n),n=0..100)];
-
Mathematica
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 33, 96, 225}, 31] (* Jean-François Alcover, Jan 17 2018 *)
-
PARI
a(n)=(n+1)^2*(n^2+2*n+3)/3 \\ Charles R Greathouse IV, Apr 17 2012
-
R
a <- c(1, 8, 33, 96,225) for(n in (length(a)+1):30) a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5] a # Yosu Yurramendi, Sep 03 2013
-
Sage
[((n+1)^2+2)*(n+1)^2/3 for n in range(40)] # G. C. Greubel, Feb 10 2019
Formula
Or, a(n-1) = n^2*(n^2+2)/3. - Corrected by R. J. Mathar, Jul 18 2009
From Vladeta Jovovic, Apr 03 2002: (Start)
G.f.: (1+x)^3/(1-x)^5.
Recurrence: a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
a(n-1) = C(n+3,4) + 3 C(n+2,4) + 3 C(n+1,4) + C(n,4).
Sum_{n>=0} 1/((1/3*(n^2 + 2*n + 3))*(n+1)^2) = (1/4)*Pi^2 - 3*sqrt(2)*Pi*coth(Pi*sqrt(2))*(1/8) + 3/8 = 1.1758589... - Stephen Crowley, Jul 14 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n > 4, a(0)=1, a(1)=8, a(2)=33, a(3)=96, a(4)=225. - Yosu Yurramendi, Sep 03 2013
From Bruce J. Nicholson, Jan 23 2019: (Start)
Sum_{i=0..n} a(i) = A061927(n+1).
E.g.f.: (3 + 21*x + 27*x^2 + 10*x^3 + x^4)*exp(x)/3. - G. C. Greubel, Feb 10 2019
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 17/3 - 8*log(2) = 1/(8 + 2/(8 + 6/(8 + ... + n*(n-1)/(8 + ...)))). See A142983. - Peter Bala, Mar 06 2024
Extensions
Formula index corrected by R. J. Mathar, Jul 18 2009
Comments