A014827 a(1)=1, a(n) = 5*a(n-1) + n.
1, 7, 38, 194, 975, 4881, 24412, 122068, 610349, 3051755, 15258786, 76293942, 381469723, 1907348629, 9536743160, 47683715816, 238418579097, 1192092895503, 5960464477534, 29802322387690, 149011611938471, 745058059692377, 3725290298461908, 18626451492309564, 93132257461547845
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See pp. 9, 18.
- László Tóth, On Schizophrenic Patterns in b-ary Expansions of Some Irrational Numbers, arXiv:2002.06584 [math.NT], 2020. See also Proc. Amer. Math. Soc. 148 (2020), pp. 461-469.
- Index entries for linear recurrences with constant coefficients, signature (7,-11,5).
Crossrefs
Programs
-
Magma
[(5^(n+1)-4*n-5)/16: n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
-
Maple
a:=n->sum((5^(n-j)-1^(n-j))/4,j=0..n): seq(a(n), n=1..21); # Zerinvary Lajos, Jan 04 2007
-
Mathematica
Join[{a=1,b=7},Table[c=6*b-5*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
-
Sage
[(gaussian_binomial(n,1,5)-n)/4 for n in range(2,23)] # Zerinvary Lajos, May 29 2009
Formula
a(n) = (5^(n+1) - 4*n - 5)/16.
G.f.: x/((1-5*x)*(1-x)^2).
From Paul Barry, Jul 30 2004: (Start)
a(n) = Sum_{k=0..n} (n-k)*5^k = Sum_{k=0..n} k*5^(n-k).
a(n) = Sum_{k=0..n} binomial(n+2,k+2)*4^k [Offset 0]. (End)
From Elmo R. Oliveira, Mar 29 2025: (Start)
E.g.f.: exp(x)*(5*exp(4*x) - 4*x - 5)/16.
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n > 3. (End)