cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A052244 Partial sums of A014827.

Original entry on oeis.org

1, 8, 46, 240, 1215, 6096, 30508, 152576, 762925, 3814680, 19073466, 95367408, 476837131, 2384185760, 11920928920, 59604644736, 298023223833, 1490116119336, 7450580596870, 37252902984560, 186264514923031, 931322574615408, 4656612873077316, 23283064365386880
Offset: 0

Views

Author

Barry E. Williams, Jan 31 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8,-18,16,-5},{1,8,46,240},20] (* Harvey P. Dale, Jun 19 2022 *)

Formula

a(n) = ((5^(n+3))-(8*(n^2) + 44*n + 61))/64.
a(n) = 5a(n-1)+ C(n+2, 2), n >= 0; a(-1)=0.
G.f.: 1 / ( (5*x-1)*(x-1)^3 ). - R. J. Mathar, Nov 19 2014

A014824 a(0) = 0; for n>0, a(n) = 10*a(n-1) + n.

Original entry on oeis.org

0, 1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 1234567900, 12345679011, 123456790122, 1234567901233, 12345679012344, 123456790123455, 1234567901234566, 12345679012345677, 123456790123456788, 1234567901234567899, 12345679012345679010, 123456790123456790121
Offset: 0

Views

Author

Keywords

Comments

The square roots of these numbers have some remarkable properties - see the link to Schizophrenic numbers.
Partial sums of A002275. - Jonathan Vos Post, Apr 25 2010
This sequence is the particular case of a(0) = 0, a(n) = r*a(n-1) + n, when r = 10. If now the first N terms are computed for (r > N) then the resulting set of numbers is readable as the smallest k-digits permutations (1 <= k <= N): Those built from the concatenation of the first k digits in base-r (see links). - R. J. Cano, Jan 09 2013
There is also an interesting structure to the decimal expansion of 1/sqrt(a(2*n+1)), which has long strings of 0's (that gradually shorten in length until they disappear) interspersed with strings of what, at first sight, appear to be random digits. However, if we factorize these blocks of 'random' digits we find they are related to each other. An example illustrating this is given below. - Peter Bala, Sep 13 2015
From Peter Bala, Sep 15 2015: (Start)
Extending the previous empirical observation, it appears that the decimal expansions of the numbers 1/ (a(4*n+1))^(1/2), 1/a((4*n+3))^(1/4), 1/(10*a(4*n))^(1/2), 1/(10*a(4*n+2))^(1/4), and their powers, have the same pattern of beginning with long strings of 0's (that gradually shorten in length until they disappear) interlaced with strings of digits which, when read as integers and factorized, turn out to be related to each other.
The following result, which is a consequence of Bottomley's explicit formula for a(n), should be helpful in explaining these observations: the decimal expansion of 1/a(2*n-1) for n >= 5 begins with long strings of 0's interlaced successively with the digits of the numbers 81*(18*n + 1)^k for k going from 0 up to approximately n/log_10(18*n). For example, for n = 7 we have 1/a(13) = 0.00000000000081000000000102870000000130644900000 165919023..., with 10287 = 81*127, 1306449 = 81*127^2 and 165919023 = 81*127^3. A similar result holds for the decimal expansion of the number 1/a(2*n).
It appears that a(4*n+3)^(1/4), a(4*n+3)^(3/4), (10*a(4*n))^(1/2), (10*a(4*n+2))^(1/4) and (10*a(4*n+2))^(3/4) are further examples of Brown's schizophrenic numbers.
A theorem of Kuzmin in the measure theory of continued fractions says that for a random real number alpha, the probability that some given partial quotient of alpha is equal to a positive integer k is given by 1/log(2)*( log(1 + 1/k) - log(1 + 1/(k+1)) ). Thus large partial quotients are the exception in continued fraction expansions. Empirically, we observe the presence of unexpectedly large partial quotients early in the continued fraction expansions of the numbers (a(4*n+1))^(1/2), (a(4*n+3))^(1/4), (10*a(4*n))^(1/2), (10*a(4*n+2))^(1/4) and their powers. An example is given below. (End)
From Ya-Ping Lu, Dec 21 2024: (Start)
To get a(n), concatenate the first n digits in the cyclic string '123456790' and subtract the number of occurrences of '9' from the concatenated number. For example, a(8) = 12345679 - 1 = 12345678.
There are 2 prime terms for n <= 20000: a(2497) and a(3301). (End)

Examples

			From _Peter Bala_, Sep 13 2015: (Start)
The decimal expansion of 1/sqrt(a(51)) begins 9.0...0211050...07423683750...02901423065625000... x 10^(-26). The long strings of 0's gradually shorten in length and are interspersed with eleven blocks of digits  [9, 21105, 742368375, 2901423065625, 1190671490555859375, 5025824361636282421875, 216068565680679841787109375, 940978603539360710982861328125, 4137365297437126626102768402099609375, 18326229731370116994398540261077880859375, 816525165681195562685426961332324981689453125]. Read as ordinary integers these numbers factorize as [3^2, (3^2)*5*7*67, (3^3)*(5^3)*(7^2)*(67^2), (3^2)*(5^5)*(7^3)*(67^3), (3^2)*(5^8)*(7^5)*(67^4), (3^4)*(5^8)*(7^6)*(67^5), (3^3)*(5^10)*(7^7)*11*(67^6), (3^3)*(5^11)*(7^7)*11*13*(67^7), (3^4)*(5^16)*(7^8)*11*13*(67^8), (3^2)*(5^17)*(7^9)*11*13*17*(67^9), (3^2)*(5^18)*(7^10)*11*13*17*19*(67^10)]. (End)
From _Peter Bala_, Sep 15 2015: (Start)
The continued fraction expansion of 1/sqrt(a(51)) begins [0; 11111111111111111111111111, 9, 47382136934375740345889, 2, 21, 3, 1, 7, 2, 1, 101028010521057015662, 5, 14, 9, 1, 1, 2, 2, 8, 5, 1, 1, 1, 1, 215411536292232442, 5, 1, 5, 1, 1, 2, 1, 1, 8, 1, 4, 3, 1, 4, 2, 1, 8, 1, 1, 3, 10, 459299650942926, 4, 1, 1, 4, 1, 20, 64, 5, 9, 2, 2, 1, 2, 1, 1, 1, 1, 30, 1, 11, 3, 979316952969, 1, 2, 93, 1, 5, 1, 1, 11, 1, 1, 1, 1, 5, 1, 29, 1, 29, 1, 1, 1, 2, 4, 1, 37, 1, 1, 2, 8, 2, 2088095848, 12, 1, 3, 1, 3, 2, 2, 3, 1, 5, 6, 1, 3, 1, 4, 2, 2, 1, 2, 2, 14, 4, 1, 2, 1, 50, 2, 6, 1, 11, 135, 4452229, 1, ...] and has several unexpectedly large partial quotients early on. (End)
For n=5, a(5) = 1*15 + 9*20 + 9^2*15 + 9^3*6 + 9^4*1 + 9^5*0 = 12345. - _Bruno Berselli_, Nov 13 2015
		

Crossrefs

Cf. A060011.
Cf. A002275. - Jonathan Vos Post, Apr 25 2010
Similar sequences in other bases are: (base-2) A000295, (base-3) A000340, (base-4) A014825, (base-5) A014827, (base-6) A014829. - R. J. Cano, Jan 11 2013
Differs from A007908, A035239, A057137, A060555, A138957 from n=10 on. - M. F. Hasler, Jan 17 2013
Cf. A030512.

Programs

  • Magma
    [(10^n-1)*(10/81)-n/9: n in [0..20]]; // Vincenzo Librandi, Aug 23 2011
    
  • Maple
    a:=n->sum((10^(n-j)-1^(n-j))/9,j=0..n): seq(a(n), n=0..17); # Zerinvary Lajos, Jan 15 2007
    a:=n->sum(10^(n-j)*j,j=0..n): seq(a(n), n=0..16); # Zerinvary Lajos, Jun 05 2008
  • Mathematica
    Table[Sum[10^i - 1, {i, n}]/9, {n, 18}] (* Robert G. Wilson v, Nov 20 2004 *)
    CoefficientList[Series[x/(1 - 12*x + 21*x^2 - 10*x^3), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 15 2015 *)
  • PARI
    linrec01(p,u,base)={my(r=!p,A=1);for(j=2,u,A=A*base+r+p*j); A};
    a(n)=(n!=0)*linrec01(1, n, 10); \\ R. J. Cano, Jan 09 2011; With (0, n, 10) it generates repunit numbers.
    
  • PARI
    A014824(n)=(10^(n+1)\9-n)\9  \\ M. F. Hasler, Jan 17 2013
    
  • Python
    def A014824(n): s = ''.join('123456790'[i%9] for i in range(n)); q, r = divmod(n, 9); return int(s) - q - r//8 # Ya-Ping Lu, Dec 21 2024

Formula

a(n) = (10^n-1)*(10/81) - n/9. - Henry Bottomley, Jul 04 2000
a(n)/10^n converges to 10/81 = 0.123456790123456790...
Let b(n) = if(n = 0, 1, if(n = 1, 10, 10*9^(n-2))). Then a(n) = Sum_{k=0..n} C(n, k)*b(k) (Binomial transform). - Paul Barry, Jan 29 2004
G.f.: x/(1-12*x+21*x^2-10*x^3). - Colin Barker, Jan 08 2012
a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3), n>2. - Wesley Ivan Hurt, Sep 15 2015
a(n) = Sum_{i=0..n} 9^i*binomial(n+1,n-1-i). - Bruno Berselli, Nov 13 2015
a(n) = Sum_{i=0..n} 10^(n-i)*i. - Ya-Ping Lu, Dec 21 2024
E.g.f.: exp(x)*(10*exp(9*x) - 9*x - 10)/81. - Elmo R. Oliveira, Mar 29 2025

A048437 Take the first n numbers written in base 5, concatenate them, then convert from base 5 to base 10.

Original entry on oeis.org

1, 7, 38, 194, 4855, 121381, 3034532, 75863308, 1896582709, 47414567735, 1185364193386, 29634104834662, 740852620866563, 18521315521664089, 463032888041602240, 11575822201040056016, 289395555026001400417, 7234888875650035010443, 180872221891250875261094
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

The first three primes in this sequence occur for n = 2 (a(2) = 7), n = 113 (a(113) = 7.4484...*10^216), n = 162 (a(162) = 1.5188...*10^346). - Kurt Foster, Oct 24 2015 [Comment added by N. J. A. Sloane, Oct 25 2015]

Examples

			a(7) = 1 2 3 4 10 11 12 = 3034532_10.
		

Crossrefs

Cf. A014827.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: this sequence, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*5^(1+Ilog(5, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 5]]]; Table[AppendTo[n, IntegerDigits[w, 5]]; n=Flatten[n]; FromDigits[n, 5], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 5], 5]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A126885 T(n,k) = n*T(n,k-1) + k, with T(n,1) = 1, square array read by ascending antidiagonals (n >= 0, k >= 1).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 11, 10, 5, 1, 6, 18, 26, 15, 6, 1, 7, 27, 58, 57, 21, 7, 1, 8, 38, 112, 179, 120, 28, 8, 1, 9, 51, 194, 453, 543, 247, 36, 9, 1, 10, 66, 310, 975, 1818, 1636, 502, 45, 10, 1, 11, 83, 466, 1865, 4881, 7279, 4916, 1013, 55, 11
Offset: 0

Views

Author

Gary W. Adamson, Dec 30 2006

Keywords

Examples

			Square array begins:
  n\k | 1   2   3   4    5     6      7       8 ...
  -------------------------------------------------
    0 | 1   2   3   4    5     6      7       8 ... A000027
    1 | 1   3   6  10   15    21     28      36 ... A000217
    2 | 1   4  11  26   57   120    247     502 ... A000295
    3 | 1   5  18  58  179   543   1636    4916 ... A000340
    4 | 1   6  27 112  453  1818   7279   29124 ... A014825
    5 | 1   7  38 194  975  4881  24412  122068 ... A014827
    6 | 1   8  51 310 1865 11196  67183  403106 ... A014829
    7 | 1   9  66 466 3267 22875 160132 1120932 ... A014830
    8 | 1  10  83 668 5349 42798 342391 2739136 ... A014831
    ...
		

Crossrefs

Antidiagonal sums are A134195.
Main diagonal gives A062805.

Programs

  • Maxima
    T(n, k) := if k = 1 then 1 else n*T(n, k - 1) + k$
    create_list(T(n - k + 1, k), n, 0, 20, k, 1, n + 1);
    /* Franck Maminirina Ramaharo, Jan 26 2019 */

Formula

T(1,k) = k*(k + 1)/2, and T(n,k) = (k - (k + 1)*n + n^(k + 1))/(n^2 - 2*n + 1) elsewhere.
T(n,k) = third entry in the vector M^k * (1, 0, 0), where M is the following 3 X 3 matrix:
1, 0, 0
1, 1, 0
1, 1, n.

Extensions

Edited and name clarified by Franck Maminirina Ramaharo, Jan 26 2019

A353096 a(1) = 4; for n > 1, a(n) = 5*a(n-1) + 5 - n.

Original entry on oeis.org

4, 23, 117, 586, 2930, 14649, 73243, 366212, 1831056, 9155275, 45776369, 228881838, 1144409182, 5722045901, 28610229495, 143051147464, 715255737308, 3576278686527, 17881393432621, 89406967163090, 447034835815434, 2235174179077153, 11175870895385747
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -11, 5}, {4, 23, 117}, 23] (* Amiram Eldar, Apr 23 2022 *)
    nxt[{n_, a_}] := {n + 1, 5 a + 4 - n}; NestList[nxt,{1,4},30][[;;,2]] (* Harvey P. Dale, Apr 28 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(x*(4-5*x)/((1-x)^2*(1-5*x)))
    
  • PARI
    a(n) = (3*5^(n+1)+4*n-15)/16;
    
  • PARI
    b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
    a(n) = b(n, 5);

Formula

G.f.: x * (4 - 5*x)/((1 - x)^2 * (1 - 5*x)).
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3).
a(n) = 3*A014827(n) + n.
a(n) = (3*5^(n+1) + 4*n - 15)/16.
a(n) = Sum_{k=0..n-1} (5 - n + k) * 5^k.
E.g.f.: exp(x)*(15*exp(4*x) + 4*x - 15)/16. - Stefano Spezia, May 28 2023

A108286 Triangle read by rows; columns are simple recursive sequences.

Original entry on oeis.org

1, 3, 1, 6, 4, 1, 10, 11, 5, 1, 15, 26, 18, 6, 1, 21, 57, 58, 27, 7, 1, 28, 120, 179, 112, 38, 8, 1, 36, 247, 543, 453, 194, 51, 9, 1, 45, 502, 1636, 1818, 975, 310, 66, 10, 1
Offset: 1

Views

Author

Gary W. Adamson, May 31 2005

Keywords

Comments

Left column = triangular numbers; Col. 2, (1, 4, 11...) = A000295; Col. 3, (1, 5, 18...) = A000340; Col. 4, (1, 6, 27...) = A014825; Col.5, (1, 7, 38...) = A014827.

Examples

			First few rows of the triangle are:
1;
3, 1;
6, 4, 1;
10, 11; 5, 1;
15, 26, 18, 6, 1;
21, 57, 58, 27, 7, 1;
...
3rd offset column: (1, 5, 18, 58...) = "1", then a(r) = 3*a(r-1) + r; e.g. 58 = 3*18 + 4 since 58 is the fourth term in the third column.
		

Crossrefs

Formula

r-th term in n-th column: initial "1", then a(r) = n*a(r-1) + r. Diagonals of A108285 become the columns of A108286.

A089000 Square table, read by antidiagonals, of coefficients T(k,n) (row k; column n) defined by: T(k,n) = k*T(k,n-1)+ n; T(k,0) = 0.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 6, 4, 1, 0, 5, 10, 11, 5, 1, 0, 6, 15, 26, 18, 6, 1, 0, 7, 21, 57, 58, 27, 7, 1, 0, 8, 28, 120, 179, 112, 38, 8, 1, 0, 9, 36, 247, 543, 453, 194, 51, 9, 1, 0, 10, 45, 502, 1636, 1818, 975, 310, 66, 10, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 02 2003

Keywords

Crossrefs

Rows begin:
{0, 1, 2, 3, 4, 5, 6, 7, 8, ...}:see A001477
{0, 1, 3, 6, 10, 15, 21, 28, ...} : see A000217
{0, 1, 4, 11, 26, 57, 120, 247, 502, ...} : see A000295
{0, 1, 5, 18, 58, 179, 543, 1636, ...} : see A000340
{0, 1, 6, 27, 112, 453, 1818, 7279, ...} : see A014825
{0, 1, 7, 38, 194, 975, 4881, 24412, ...} : see A014827
{0, 1, 8, 51, 310, 1865, 11196, 67183, ...}: see diagonals of triangle A088990
Diagonal begin:
{0, 1, 4, 18, 112, 975, 11196, ... } :see A062805
{0, 1, 5, 27, 194, 1865, ...} : see A023811
Column {3, 6, 11, 18, 27, 38, 51, ...} : see A010000

Programs

  • Mathematica
    Unprotect[Power]; 0^0=1; T[n_,k_]:=Sum[j*k^(n-j),{j,0,n}]; Table[T[n-k,k],{n,0,10},{k,0,n}]//Flatten (* Stefano Spezia, Apr 19 2025 *)

Formula

T(k, n)= (k^(n+1)- (k-1)*n - k)/(k-1)^2. T(k, n) = Sum(j, 0<=j<=n; j*k^(n-j)).

A108285 Triangle read by rows, generated from (1, 2, 3, ...).

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 11, 10, 1, 6, 18, 26, 15, 1, 7, 27, 58, 57, 21, 1, 8, 38, 112, 179, 120, 28, 1, 9, 51, 194, 453, 543, 247, 36
Offset: 0

Views

Author

Gary W. Adamson, May 30 2005

Keywords

Comments

By diagonals (d=1,2,3,...) going to the left with (1,3,6,...) = d(1), these are sequences of the form (k-th term a(k) = d*a(k-1) + k). Example: 1, 7, 38, 194, ... (the 5th diagonal) = A014827, is generated by a(k) = 5*a(k-1) + k. Diagonal 2 = (1, 4, 11, 26, ...) = A000295; Diagonal 3 = (1, 5, 18, ...) = A000340; Diagonal 4 = (1, 6, 27, ...) = A014825.
Triangle A108243 is generated by analogous operations from (..., 3, 2, 1) instead of (1, 2, 3, ...).

Examples

			4th column (offset) = 10, 26, 58, 112, ...= f(x), x = 1, 2, 3; x^3 + 2x^2 + 3x + 4.
First few rows of the triangle are:
  1;
  1, 3;
  1, 4, 6;
  1, 5, 11, 10;
  1, 6, 18, 26, 15;
  1, 7, 27, 58, 57, 21;
  1, 8, 38, 112, 179, 120, 28;
  ...
		

Crossrefs

Formula

n-th column = f(x), x = 1, 2, 3, ...; x^(n) + 2*x^(n-1) + 3*x^(n-2) + ... + (n+1).

A185055 Number of representations of 5^(2n) as a sum a^2 + b^2 + c^2 with 0 < a <= b <= c.

Original entry on oeis.org

0, 0, 2, 14, 76, 388, 1950, 9762, 48824, 244136, 1220698, 6103510, 30517572, 152587884, 762939446, 3814697258, 19073486320, 95367431632, 476837158194, 2384185791006, 11920928955068, 59604644775380, 298023223876942, 1490116119384754, 7450580596923816, 37252902984619128
Offset: 0

Views

Author

Zak Seidov, Mar 02 2012

Keywords

Comments

Corresponding formulas for several first primes:
p=3, a(n)=(3*3^n+2*n+1)/4 (A047926)
p=5, a(n)=(5^n-4*n-1)/8 (A185055)
p=7, a(n)=(7^n-1)/6
p=11, a(n)=(3*11^n+10*n-3)/20
p=13, a(n)=(13^n-4*n-1)/8
p=17, a(n)=(17^n-1)/8
p=19, a(n)=(5*19^n+18*n-5)/36
p=23, a(n)=3*(23^n-1)/22
p=29, a(n)=(29^n-4*n-1)/8
p=31, a(n)=2*(31^n-1)/15
p=37, a(n)=(37^n-4*n-1)/8
p=41, a(n)=(41^n-1)/8
p=43, a(n)=(11*43^n+42*n-11)/84
p=47, a(n)=3*(47^n-1)/23.
General formulas for a(n) depend on p mod 8 as follows:
p = 1 mod 8, a(n)=(p^n-1)/8
p = 3 mod 8, a(n)=((p + 1)*p^n + 4*(p - 1)*n - (p + 1))/(8*(p - 1))
p = 5 mod 8, a(n)=(p^n-4*n-1)/8
p = 7 mod 8, a(n)=((p + 1)*(p^n - 1))/(8*(p - 1)).

Examples

			a(2)=2 because 25^2 = 9^2+12^2+20^2 = 12^2+15^2+16^2.
		

Crossrefs

Formula

a(n) = (5^n-4n-1)/8.
From Chai Wah Wu, Jun 07 2024: (Start)
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n > 2.
G.f.: -2*x^2/((x - 1)^2*(5*x - 1)). (End)
a(n) = 2 * A014827(n-1) for n >= 2. - Alois P. Heinz, Jun 07 2024

A014852 Numbers k that divide s(k), where s(1)=1, s(j)=5*s(j-1)+j.

Original entry on oeis.org

1, 5, 55, 355, 605, 3905, 6655, 25205, 42955, 73205, 201995, 277255, 472505, 805255, 1789555, 2221945, 3049805, 5197555, 5693105, 6049555, 7321105, 8857805, 14341645, 19685105, 24441395, 28150705, 33547855, 57173105, 62624155, 66545105, 80532155, 97435855, 114935155, 127058405
Offset: 1

Views

Author

Keywords

Comments

The sequence so far (for k > 1) is the smallest terms of the values of (5 * 11^i * 71^m) for i,m >= 0. Is there another term (prime?) in the product or can it be proved that all terms have this form?

Crossrefs

s(n) = A014827(n).

Programs

  • PARI
    lista(nn) = {nb = 1000; for (n=1, nn, v = vector(nb, i, (5^(i+(n-1)*nb+1)-4*(i+(n-1)*nb)-5)/(16*(i+(n-1)*nb))); w = select(n->(type(n) == "t_INT"), v, 1); for (k=1, #w, print1(w[k]+(n-1)*nb, ", ")); kill(v););} \\ Michel Marcus, May 31 2014
    
  • PARI
    is(n) = n%2 == 1 && lift(Mod(5, n)^(n + 1) - Mod(5, n)) == 0 \\ David A. Corneth, Aug 08 2021

Extensions

Comment and more terms from Larry Reeves (larryr(AT)acm.org), Mar 24 2000
a(10)-a(13) from Michel Marcus, May 31 2014
a(14)-a(17) from Jinyuan Wang, Aug 08 2021
a(18)-a(21) from Michael S. Branicky, Aug 08 2021
a(22)-a(34) from David A. Corneth, Aug 08 2021
Showing 1-10 of 12 results. Next