A134195
Antidiagonal sums of square array A126885.
Original entry on oeis.org
1, 3, 7, 15, 32, 72, 178, 494, 1543, 5373, 20581, 85653, 383494, 1833250, 9301792, 49857540, 281193501, 1663183383, 10286884195, 66365330811, 445598473612, 3107611606908, 22470529228910, 168190079241210, 1301213084182483, 10391369994732593, 85553299734530113
Offset: 0
a(4) = 1 + 5 + 11 + 10 + 5 = 32.
-
T(n, k) := if k = 1 then 1 else n*T(n, k - 1) + k$ /* A126885 */
a(n) := sum(T(n - k + 1, k), k, 1, n + 1)$
makelist(a(n), n, 0, 50); /* Franck Maminirina Ramaharo, Jan 26 2019 */
A368296
Square array T(n,k), n >= 2, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * floor(j/2).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 4, 8, 6, 3, 1, 5, 14, 18, 9, 3, 1, 6, 22, 44, 39, 12, 4, 1, 7, 32, 90, 135, 81, 16, 4, 1, 8, 44, 162, 363, 408, 166, 20, 5, 1, 9, 58, 266, 813, 1455, 1228, 336, 25, 5, 1, 10, 74, 408, 1599, 4068, 5824, 3688, 677, 30, 6
Offset: 2
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 4, 8, 14, 22, 32, 44, ...
2, 6, 18, 44, 90, 162, 266, ...
3, 9, 39, 135, 363, 813, 1599, ...
3, 12, 81, 408, 1455, 4068, 9597, ...
4, 16, 166, 1228, 5824, 20344, 57586, ...
A014830
a(1)=1; for n > 1, a(n) = 7*a(n-1) + n.
Original entry on oeis.org
1, 9, 66, 466, 3267, 22875, 160132, 1120932, 7846533, 54925741, 384480198, 2691361398, 18839529799, 131876708607, 923136960264, 6461958721864, 45233711053065, 316635977371473, 2216451841600330, 15515162891202330, 108606140238416331, 760242981668914339, 5321700871682400396
Offset: 1
For n=5, a(5) = 1*15 + 6*20 + 6^2*15 + 6^3*6 + 6^4*1 = 3267. - _Bruno Berselli_, Nov 13 2015
- Colin Barker, Table of n, a(n) for n = 1..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 18.
- Index entries for linear recurrences with constant coefficients, signature (9,-15,7).
-
a:=n->sum((7^(n-j)-1)/6,j=0..n): seq(a(n), n=1..19); # Zerinvary Lajos, Jan 15 2007
-
a[1] = 1; a[n_] := 7*a[n-1]+n; Table[a[n], {n, 10}] (* Zak Seidov, Feb 06 2011 *)
LinearRecurrence[{9, -15, 7}, {1, 9, 66}, 30] (* Harvey P. Dale, Jul 22 2013 *)
-
Vec(x/((1 - x)^2*(1 - 7*x)) + O(x^25)) \\ Colin Barker, Jun 03 2020
A014881
a(1)=1, a(n) = 11*a(n-1) + n.
Original entry on oeis.org
1, 13, 146, 1610, 17715, 194871, 2143588, 23579476, 259374245, 2853116705, 31384283766, 345227121438, 3797498335831, 41772481694155, 459497298635720, 5054470284992936, 55599173134922313, 611590904484145461, 6727499949325600090, 74002499442581601010
Offset: 1
-
I:=[1, 13, 146]; [n le 3 select I[n] else 13*Self(n-1) - 23*Self(n-2)+ 11*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
-
a:= n-> (Matrix([[1,0,1],[1,1,1],[0,0,11]])^n)[2,3]:
seq(a(n), n=1..17); # Alois P. Heinz, Aug 06 2008
-
LinearRecurrence[{13, -23, 11}, {1, 13, 146}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
A014896
a(1) = 1, a(n) = 13*a(n-1) + n.
Original entry on oeis.org
1, 15, 198, 2578, 33519, 435753, 5664796, 73642356, 957350637, 12445558291, 161792257794, 2103299351334, 27342891567355, 355457590375629, 4620948674883192, 60072332773481512, 780940326055259673, 10152224238718375767, 131978915103338884990, 1715725896343405504890
Offset: 1
-
I:=[1, 15, 198]; [n le 3 select I[n] else 15*Self(n-1) - 27*Self(n-2)+ 13*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
-
a:=n->sum((13^(n-j)-1)/12,j=0..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 05 2007
a:= n-> (Matrix([[1,0,1],[1,1,1],[0,0,13]])^n)[2,3]:
seq(a(n), n=1..17); # Alois P. Heinz, Aug 06 2008
-
LinearRecurrence[{15, -27, 13}, {1, 15, 198}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
-
a[1]:1$
a[2]:15$
a[3]:198$
a[n]:=15*a[n-1]-27*a[n-2]+13*a[n-3]$
A014896(n):=a[n]$ makelist(A014896(n),n,1,30); /* Martin Ettl, Nov 07 2012 */
A014897
a(1)=1, a(n) = 14*a(n-1) + n.
Original entry on oeis.org
1, 16, 227, 3182, 44553, 623748, 8732479, 122254714, 1711566005, 23961924080, 335466937131, 4696537119846, 65751519677857, 920521275490012, 12887297856860183, 180422169996042578, 2525910379944596109, 35362745319224345544, 495078434469140837635, 6931098082567971726910
Offset: 1
-
I:=[1, 16, 227]; [n le 3 select I[n] else 16*Self(n-1) - 29*Self(n-2) + 14*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
-
LinearRecurrence[{16, -29, 14}, {1, 16, 227}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
A014898
a(1)=1, a(n) = 15*a(n-1) + n.
Original entry on oeis.org
1, 17, 258, 3874, 58115, 871731, 13075972, 196139588, 2942093829, 44131407445, 661971111686, 9929566675302, 148943500129543, 2234152501943159, 33512287529147400, 502684312937211016, 7540264694058165257, 113103970410872478873, 1696559556163087183114, 25448393342446307746730
Offset: 1
-
I:=[1, 17, 258]; [n le 3 select I[n] else 17*Self(n-1) - 31*Self(n-2) + 15*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
-
LinearRecurrence[{17, -31, 15}, {1, 17, 258}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
nxt[{n_,a_}]:={n+1,15a+n+1}; NestList[nxt,{1,1},20][[;;,2]] (* Harvey P. Dale, Jun 15 2025 *)
A014899
a(n) = (16^(n+1) - 15*n - 16)/225.
Original entry on oeis.org
0, 1, 18, 291, 4660, 74565, 1193046, 19088743, 305419896, 4886718345, 78187493530, 1250999896491, 20015998343868, 320255973501901, 5124095576030430, 81985529216486895, 1311768467463790336, 20988295479420645393, 335812727670730326306, 5373003642731685220915
Offset: 0
-
I:=[0, 1, 18]; [n le 3 select I[n] else 18*Self(n-1) - 33*Self(n-2) + 16*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
-
a:=n->sum((16^(n-j)-1)/15,j=0..n): seq(a(n), n=1..16); # Zerinvary Lajos, Jan 05 2007
n0:=20: tabl:=array(1..n0-1): for n from 0 to n0 do: tabl[n+1]:=(4^(2*n+2) - 15*n - 16)/225:od:print( tabl): # Michel Lagneau, Apr 26 2010
-
s=0;lst={};Do[AppendTo[lst,s+=s+=s+=s+=s+=n],{n,5!}];lst/16 (* Vladimir Joseph Stephan Orlovsky, Oct 20 2009 *)
Table[(16^(n+1)-15*n-16)/225,{n,0,20}] (* Harvey P. Dale, Dec 20 2010 *)
LinearRecurrence[{18, -33, 16}, {0, 1, 18}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
-
A014899(n):=(16^(n+1)-15*n-16)/225$ makelist(A014899(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
a(n)=(16^(n+1)-15*n)\225 \\ Charles R Greathouse IV, May 15 2013
A014903
a(1)=1, a(n) = 19*a(n-1) + n.
Original entry on oeis.org
1, 21, 402, 7642, 145203, 2758863, 52418404, 995949684, 18923044005, 359537836105, 6831218886006, 129793158834126, 2466070017848407, 46855330339119747, 890251276443275208, 16914774252422228968, 321380710796022350409, 6106233505124424657789, 116018436597364068498010
Offset: 1
-
I:=[1, 21, 402]; [n le 3 select I[n] else 21*Self(n-1) - 39*Self(n-2) + 19*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
-
LinearRecurrence[{21, -39, 19}, {1, 21, 402}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
A014904
a(1)=1, a(n) = 20*a(n-1) + n.
Original entry on oeis.org
1, 22, 443, 8864, 177285, 3545706, 70914127, 1418282548, 28365650969, 567313019390, 11346260387811, 226925207756232, 4538504155124653, 90770083102493074, 1815401662049861495, 36308033240997229916, 726160664819944598337, 14523213296398891966758, 290464265927977839335179
Offset: 1
-
I:=[1, 22, 443]; [n le 3 select I[n] else 22*Self(n-1) - 41*Self(n-2) + 20*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
-
LinearRecurrence[{22, -41, 20}, {1, 22, 443}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
-
a[1]:1$
a[2]:22$
a[3]:443$
a[n]:=22*a[n-1]-41*a[n-2]+20*a[n-3]$
A014904(n):=a[n]$
makelist(A014904(n),n,1,30); /* Martin Ettl, Nov 06 2012 */
-
Vec(x/((1-20*x)*(x-1)^2)+O(x^99)) \\ Charles R Greathouse IV, Jul 05 2024
Showing 1-10 of 18 results.
Comments