cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A126885 T(n,k) = n*T(n,k-1) + k, with T(n,1) = 1, square array read by ascending antidiagonals (n >= 0, k >= 1).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 11, 10, 5, 1, 6, 18, 26, 15, 6, 1, 7, 27, 58, 57, 21, 7, 1, 8, 38, 112, 179, 120, 28, 8, 1, 9, 51, 194, 453, 543, 247, 36, 9, 1, 10, 66, 310, 975, 1818, 1636, 502, 45, 10, 1, 11, 83, 466, 1865, 4881, 7279, 4916, 1013, 55, 11
Offset: 0

Views

Author

Gary W. Adamson, Dec 30 2006

Keywords

Examples

			Square array begins:
  n\k | 1   2   3   4    5     6      7       8 ...
  -------------------------------------------------
    0 | 1   2   3   4    5     6      7       8 ... A000027
    1 | 1   3   6  10   15    21     28      36 ... A000217
    2 | 1   4  11  26   57   120    247     502 ... A000295
    3 | 1   5  18  58  179   543   1636    4916 ... A000340
    4 | 1   6  27 112  453  1818   7279   29124 ... A014825
    5 | 1   7  38 194  975  4881  24412  122068 ... A014827
    6 | 1   8  51 310 1865 11196  67183  403106 ... A014829
    7 | 1   9  66 466 3267 22875 160132 1120932 ... A014830
    8 | 1  10  83 668 5349 42798 342391 2739136 ... A014831
    ...
		

Crossrefs

Antidiagonal sums are A134195.
Main diagonal gives A062805.

Programs

  • Maxima
    T(n, k) := if k = 1 then 1 else n*T(n, k - 1) + k$
    create_list(T(n - k + 1, k), n, 0, 20, k, 1, n + 1);
    /* Franck Maminirina Ramaharo, Jan 26 2019 */

Formula

T(1,k) = k*(k + 1)/2, and T(n,k) = (k - (k + 1)*n + n^(k + 1))/(n^2 - 2*n + 1) elsewhere.
T(n,k) = third entry in the vector M^k * (1, 0, 0), where M is the following 3 X 3 matrix:
1, 0, 0
1, 1, 0
1, 1, n.

Extensions

Edited and name clarified by Franck Maminirina Ramaharo, Jan 26 2019

A048439 Take the first n numbers written in base 7, concatenate them, then convert from base 7 to base 10.

Original entry on oeis.org

1, 9, 66, 466, 3267, 22875, 1120882, 54923226, 2691238083, 131870666077, 6461662637784, 316621469251428, 15514451993319985, 760208147672679279, 37250199235961284686, 1825259762562102949630, 89437728365543044531887, 4382448689911609182062481
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

The first two primes in this sequence occur for n = 10 (a(10) = 131870666077) and n = 37 (a(37) = 569432644200356239518976257368822195317881440478377541397) (email from Kurt Foster, Oct 24 2015). What is the next prime? - N. J. A. Sloane, Oct 25 2015
After a(37), there are no more primes through a(4000) = 2.2670...*10^14538. - Jon E. Schoenfield, Jan 19 2018

Examples

			a(8): (1)(2)(3)(4)(5)(6)(10)(11) = 1234561011_7 = 54923226.
		

Crossrefs

Cf. A014830.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: this sequence, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*7^(1+Ilog(7, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    a[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 7], 7]; Array[a, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A353098 a(1) = 6; for n>1, a(n) = 7 * a(n-1) + 7 - n.

Original entry on oeis.org

6, 47, 333, 2334, 16340, 114381, 800667, 5604668, 39232674, 274628715, 1922401001, 13456807002, 94197649008, 659383543049, 4615684801335, 32309793609336, 226168555265342, 1583179886857383, 11082259208001669, 77575814456011670, 543030701192081676
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9, -15, 7}, {6, 47, 333}, 21] (* Amiram Eldar, Apr 23 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(x*(6-7*x)/((1-x)^2*(1-7*x)))
    
  • PARI
    a(n) = (5*7^(n+1)+6*n-35)/36;
    
  • PARI
    b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
    a(n) = b(n, 7);

Formula

G.f.: x * (6 - 7 * x)/((1 - x)^2 * (1 - 7 * x)).
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3).
a(n) = 5 * A014830(n) + n.
a(n) = (5*7^(n+1) + 6*n - 35)/36.
a(n) = Sum_{k=0..n-1} (7 - n + k)*7^k.
E.g.f.: exp(x)*(35*(exp(6*x) - 1) + 6*x)/36. - Stefano Spezia, May 29 2023

A014854 Numbers k that divide s(k), where s(1)=1, s(j)=7*s(j-1)+j.

Original entry on oeis.org

1, 3, 7, 9, 21, 27, 57, 63, 81, 171, 189, 203, 243, 333, 399, 513, 567, 609, 729, 999, 1083, 1197, 1539, 1701, 1827, 2187, 2331, 2943, 2997, 3249, 3591, 4617, 5103, 5481, 5887, 6327, 6561, 6993, 7581, 8829, 8991, 9567, 9747, 10773, 11571, 11977
Offset: 1

Views

Author

Keywords

Crossrefs

s(n) = A014830(n).
Showing 1-4 of 4 results.