A014896 a(1) = 1, a(n) = 13*a(n-1) + n.
1, 15, 198, 2578, 33519, 435753, 5664796, 73642356, 957350637, 12445558291, 161792257794, 2103299351334, 27342891567355, 355457590375629, 4620948674883192, 60072332773481512, 780940326055259673, 10152224238718375767, 131978915103338884990, 1715725896343405504890
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (15,-27,13).
Crossrefs
Row n=13 of A126885.
Programs
-
Magma
I:=[1, 15, 198]; [n le 3 select I[n] else 15*Self(n-1) - 27*Self(n-2)+ 13*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
-
Maple
a:=n->sum((13^(n-j)-1)/12,j=0..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 05 2007 a:= n-> (Matrix([[1,0,1],[1,1,1],[0,0,13]])^n)[2,3]: seq(a(n), n=1..17); # Alois P. Heinz, Aug 06 2008
-
Mathematica
LinearRecurrence[{15, -27, 13}, {1, 15, 198}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
-
Maxima
a[1]:1$ a[2]:15$ a[3]:198$ a[n]:=15*a[n-1]-27*a[n-2]+13*a[n-3]$ A014896(n):=a[n]$ makelist(A014896(n),n,1,30); /* Martin Ettl, Nov 07 2012 */
Formula
a(n) = 15*a(n-1) - 27*a(n-2) + 13*a(n-3), with a(1)=1, a(2)=15, a(3)=198. - Vincenzo Librandi, Oct 20 2012
G.f.: x/((1-13*x)*(1-x)^2). - Jinyuan Wang, Mar 11 2020
From Elmo R. Oliveira, Mar 31 2025: (Start)
E.g.f.: exp(x)*(13*exp(12*x) - 12*x - 13)/144.
a(n) = (13^(n+1) - 12*n - 11)/144. (End)